TY - JOUR T1 - Determinants of Non-farm Income and Their Effects on Agricultural Productivity Among Farming Households in Nigeria TT - Nijerya'daki Çiftçi Haneleri Arasında Tarım Dışı Gelirin Tarımsal Üretkenlik Üzerindeki Belirleyicileri AU - Obisesan, Omobolaji PY - 2025 DA - June Y2 - 2025 DO - 10.61513/tead.1580648 JF - Tarım Ekonomisi Araştırmaları Dergisi JO - TEAD PB - Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü Müdürlüğü WT - DergiPark SN - 2687-2765 SP - 81 EP - 95 VL - 11 IS - 1 LA - en AB - The agricultural sector accounts for about 23% of Nigeria’s Gross Domestic Product (GDP), with over 70% of the population involved in one agricultural activity or the other. Despite this huge involvement in the agricultural sector by farming households, majority are still relatively poor. As a result of this poor narrative among these households, it is not easy for them to attain optimum agricultural productivity. This also implies that majority of these farmers are easily prone to shocks and natural hazards assailing the agricultural sector negatively. To this end, this study investigated the determinants of non-farm income and their effects on the productivity of agricultural farming households in Nigeria, as a way of mitigating shocks. The World Bank Data on Emergencies Monitoring Household Survey 2021 was used to ascertain these claims. The descriptive statistics was used to determine the socio-economic characteristics of farming households while the Probit and the linear regression models were used in estimating the determinants of non-farm income and agricultural productivity. The results obtained elucidates on what effect agricultural non-farm income has on the productivity of farming households and how policy makers can make informed decisions that would support sustainable agriculture and mitigation of shocks in the Nigerian agricultural sector. KW - Agricultural Productivity KW - farming households KW - Mitigating shocks KW - non-farm income N2 - Tarım sektörü Nijerya'nın Gayri Safi Yurtiçi Hasılasının (GSYİH) yaklaşık %23'ünü oluşturur ve nüfusun %70'inden fazlası bir tarımsal faaliyette yer alır. Çiftçi hanelerin tarım sektöründeki bu büyük katılımına rağmen, çoğunluk hala nispeten fakirdir. Bu haneler arasındaki bu zayıf anlatının bir sonucu olarak, optimum tarımsal üretkenliğe ulaşmaları kolay değildir. Bu ayrıca, bu çiftçilerin çoğunun tarım sektörünü olumsuz yönde etkileyen şoklara ve doğal afetlere kolayca maruz kaldığı anlamına gelir. Bu amaçla, bu çalışma, şokları azaltmanın bir yolu olarak, tarım dışı gelirin belirleyicilerini ve Nijerya'daki tarımsal çiftçilik hanelerinin üretkenliği üzerindeki etkilerini araştırdı. Bu iddiaları doğrulamak için Dünya Bankası Acil Durum İzleme Hane Halkı Anketi 2021 Verileri kullanıldı. Betimleyici istatistikler, çiftçilik hanelerinin sosyo-ekonomik özelliklerini belirlemek için kullanılırken, Probit ve doğrusal regresyon modelleri, tarım dışı gelirin ve tarımsal üretkenliğin belirleyicilerini tahmin etmek için kullanıldı. Elde edilen sonuçlar, tarımsal tarım dışı gelirin çiftçilik hanelerinin üretkenliği üzerinde nasıl bir etkiye sahip olduğunu ve politika yapıcıların sürdürülebilir tarımı ve Nijerya tarım sektöründeki şokların azaltılmasını destekleyecek bilinçli kararlar nasıl alabileceklerini açıklamaktadır. CR - Agriculture in Nigeria - statistics and facts | Statista CR - Abiola, A., & Adefabi, R. A. (2022). Rural Structural Transformation and Agricultural Productivity in Nigeria. Athens Journal of Business & Economics, 8(2), 119–138. https://doi.org/10.30958/ajbe.8-2-2 CR - Abubakar, M. S., & Attanda, M. L. (2013). The concept of sustainable agriculture: Challenges and prospects. IOP Conference Series: Materials Science and Engineering, 53(1). https://doi.org/10.1088/1757-899X/53/1/012001 CR - Akenbor, A. S. and Esheya, S. A. (2022). STRENGTHENING NIGERIA’S WEAK ECONOMY; DOES AGRICULTURAL EXPORTS REALLY MATTER? EVIDENCE FROM COTTON SEED EXPORTS. Journal of Agriculture and Food Science, 20(1), 111–124. https://doi.org/dx.doi.org/10.4314/jafs.v20i1.9 INTRODUCTION CR - Amare, M., Jensen, N. D., Shiferaw, B., & Cissé, J. D. (2018). Rainfall shocks and agricultural productivity: Implication for rural household consumption. Agricultural Systems, 166(August), 79–89. https://doi.org/10.1016/j.agsy.2018.07.014 CR - Awoyemi B.O, Afolabi B, and A. K. J. (2017). Agricultural Productivity and Economic Growth: Impact Analysis from Nigeria. Scientific Research Journal (SCIRJ), 5(10). http://eprints.abuad.edu.ng/594/1/scirj-P1017442.pdf CR - Benjamin Tetteh Anang , Kwame Nkrumah-Ennin, and J. A. N. (2020). Does Off-Farm Work Improve Farm Income? Empirical Evidence from Tolon District in Northern Ghana. Advances in Agriculture, 2020, 8. https://doi.org/10.1155/2020/1406594 CR - Berchoux, T., Watmough, G. R., Hutton, C. W., & Atkinson, P. M. (2019). Agricultural shocks and drivers of livelihood precariousness across Indian rural communities. Landscape and Urban Planning, 189(June 2018), 307–319. https://doi.org/10.1016/j.landurbplan.2019.04.014 CR - Fadeyi, O. A. (2021). Smallholder agricultural finance in Nigeria : The research gap. Journal of Development and Agricultural Economics Review, 10(11), 367–376. https://doi.org/10.5897/JDAE2018.0976 CR - Food and Agriculture Organization (FAO) in Nigeria. (2020). Northeastern Nigeria: Adamawa, Borno and Yobe States. Food and Agriculture Organisation (FAO). https://www.fao.org/documents/card/en?details=CC7654EN CR - Guest Editorial. (2024). Introduction to the special issue on productive employment in rural farm and non-farm sectors in sub-Saharan Africa. Journal of Agribusiness in Developing and Emerging Economies, 14(1), 1–5. https://doi.org/10.1108/JADEE-02-2024-340 CR - Inderjit Singh, L. S. and J. S. (1986). A Survey of Agricultural Household Models: Recent Findings and Policy Implications. The World Bank Economic Review, 1(1), 149–179. https://www.jstor.org/stable/3989948 CR - Kamara, A. Y., Kamai, N., & Omoigui, L. O. (2020). Guide to Maize Production in Northern Nigeria Guide to Maize Production in Northern Nigeria. In IITA, lbadan, Nigeria. CR - Korgbeelo, D. C. (2022). Contribution of Agriculture to the Development of the Nigerian Economy. South Asian Research Journal of Humanities and Social Sciences, 4(3), 167–176. https://doi.org/10.36346/sarjhss.2022.v04i03.004 CR - Li, Jinning, S. S., & Sun, G. S. (2022). Non-Farm Employment, Farmland Renting and Farming Ability: Evidence from China. International Journal of Environmental Research and Public Health, 19(9). https://doi.org/10.3390/ijerph19095476 CR - Afouda Martial, I., Tama, C., Firmin Akpo, I., & Afouda Yabi, J. (2019). Determinants of the Economic Profitability of Soy Production in North-East Benin. European Journal of Scientific Research, 154(2), 270–280. http://www.europeanjournalofscientificresearch.com CR - Martinson Ankrah Twumasi, Abbas Ali Chandio, G. R. S. and H. Z. (2022). Off-Farm Employment and Agricultural Credit Fungibility Nexus in Rural Ghana. Sustainability (Switzerland), 14(15), 1–15. https://doi.org/10.3390/su14159109 CR - Mengistu, N. A., & Belda, R. H. (2024). The role of livelihood diversification strategies in the total household income in Takusa Woreda , Amhara Region , Ethiopia. Cogent Social Sciences, 10(1). https://doi.org/10.1080/23311886.2024.2306033 CR - Ming, C., Liu Jing, Shi Hongxu and, & Guo Tianfeng. (2022). The Effect of Off-Farm Employment on Agricultural Production Efficiency: Micro Evidence in China. Sustainability (Switzerland), 14(6), 1–12. https://doi.org/10.3390/su14063385 CR - Muhammad Sani Burodo, M. A. B. and A. A. J. (2022). An empirical investigation of agricultural productivity and its effect on economic growth: Evidence from Kebbi state, Nigeria. International Journal of Multidisciplinary Research and Growth Evaluation, 03(05), 108–112. https://doi.org/10.54660/anfo.2022.3.5.6 CR - N.V.E, Mazibuko and M.A, Antwi. (2019). Socio-Economic Factors Influencing Smallholder Farmers Agricultural Infrastructure Availability, Accessibility and Satisfaction: A Case on North West Province in South Africa (May 31, 2019). , Vol. 12, No. 05, pp. 11-26, 2019,. OIDA International Journal of Sustainable Development, 12(05), 11–26. https://ssrn.com/abstract=3481545 CR - Obed I. Ojonta and Jonathan E. Ogbuabor. (2021). Access To Credit and Physical Capital Stock: a Study of Non-Farm Household Enterprises in Nigeria. Buletin Ekonomi Moneter Dan Perbankan, 24(4), 631–640. https://doi.org/10.21098/BEMP.V24I4.1515 CR - Oberc, B. P. and, & Arroyo Schnell, A. (2020). Approaches to Sustainable Agriculture: exploring the pathways towards the future of farming (G. Couser (ed.)). IUCN, Brussels, Belgium. https://doi.org/https://doi.org/10.2305/IUCN.CH.2020.07.en Allan CR - Omodero, C. O. and, & Ehikioya, B. I. (2022). Agricultural financing to guarantee food safety in an emerging nation: A case study of Nigeria. Business: Theory and Practice, 23(1), 53–59. https://doi.org/10.3846/btp.2022.13092 CR - Pappas, C. P., & Papadas, C. T. (2024). Agricultural Value Added , Farm Business Cycles and Their Relation to the Non-Farm Economy. In Eleni Theodoropoulou (Ed.), 17th International Conference of the Hellenic Association of Agricultural Economists, Thessaloniki, Greece, 2–3 November 2023. (pp. 1–4). CR - Nkegbe Paul Kwame, Abdelkrim Araar, Benjamin Musah Abu, Hamdiyah Alhassan, Yazidu Ustarz1, E. D. S. and S. A. (2022). Nonfarm activity and market participation by farmers in Ghana. Agricultural and Food Economics, 10(4), 1–23. https://doi.org/10.1186/s40100-022-00210-1 CR - Nisbet Robert, J. E. and G. M. (2009). Handbook of Statistical Analysis and Data Mining Applications. In Handbook of Statistical Analysis and Data Mining Applications (pp. 259–284). Science Direct. https://doi.org/https://doi.org/10.1016/B978-0-12-374765-5.X0001-0 CR - Nisbet Robert, J. E. and G. M. (2018). Handbook of Statistical Analysis and Data Mining Applications (ELSEVIER (Science Direct) (ed.)). Academic Press. https://doi.org/https://doi.org/10.1016/C2012-0-06451-4 CR - Silva, B. K. N., Lucio, P. S., Silva, C. M. S., Spyrides, M. H. C., Silva, M. T., & Andradre, L. M. B. (2017). Characterization agricultural vulnerability to drought in the Northeast of Brazil. Natural Hazards and Earth System Sciences Discussions, November, 1–18. https://doi.org/10.5194/nhess-2017-377 CR - Sun, J.; Li, J.; Cui, Y. (2024). Does Non-Farm Employment Promote Farmland Abandonment. MDPI, 13(129), 1–20. https://doi.org/https://doi.org/10.3390/land13020129 CR - Takeshi Fujie and Tetsuji Senda. (2019). Effects of Aggregate Shocks on the Productivity of Farm Households in Prewar Japan. Japanese Journal of Agricultural Economics, 21, 1–19. https://doi.org/10.18480/jjae.21.0_1 CR - Tan, Y., Sarkar, A., Rahman, A., Qian, L., Memon, W. H., & Magzhan, Z. (2021). Does external shock influence farmer’s adoption of modern irrigation technology?—A case of Gansu Province, China. Land, 10(8), 1–16. https://doi.org/10.3390/land10080882 UR - https://doi.org/10.61513/tead.1580648 L1 - https://dergipark.org.tr/tr/download/article-file/4345548 ER -