TY - JOUR T1 - Fractal Geometries in Wireless Communication: A Focus on Sierpinski Carpet Fractal Antennas TT - Kablosuz İletişimde Fraktal Geometriler: Sierpinski Halı Fraktal Antenlerine Odaklanma AU - Ozer, Zafer PY - 2025 DA - April Y2 - 2025 DO - 10.53433/yyufbed.1582558 JF - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - YYUFBED PB - Van Yüzüncü Yıl Üniversitesi WT - DergiPark SN - 1300-5413 SP - 206 EP - 214 VL - 30 IS - 1 LA - en AB - This article explores the design and performance of a Sierpinski carpet fractal antenna aimed at achieving a resonant frequency of approximately 2.4 GHz, a critical band for wireless applications like Wi-Fi. The study emphasizes the advantages of fractal geometries in enhancing antenna miniaturization, bandwidth, and gain, making them suitable for modern communication systems. Using COMSOL Multiphysics, the antenna's electromagnetic characteristics were simulated and experimentally validated, focusing on reflection coefficients, radiation patterns, and impedance matching. The simulation revealed strong impedance matching at 2.432 GHz with an S11 reflection coefficient of about -30 dB, indicating minimal power loss. Experimental results closely align with simulations, confirming the design's narrowband operation and nearly spherical radiation pattern, which are suitable for applications such as RFID, Wi-Fi, and certain medical devices. KW - 2.4 GHz KW - Antenna design KW - Sierpinski carpet fractal antenna KW - Wireless communication N2 - Bu makale, Wi-Fi gibi kablosuz uygulamalar için kritik bir bant olan yaklaşık 2,4 GHz'lik bir rezonans frekansına ulaşmayı amaçlayan bir Sierpinski halı fraktal anteninin tasarımını ve performansını araştırmaktadır. Çalışma, fraktal geometrilerin anten minyatürizasyonunu, bant genişliğini ve kazancını artırmadaki avantajlarını vurgulayarak onları modern iletişim sistemleri için uygun hale getiriyor. COMSOL Multiphysics kullanılarak antenin elektromanyetik özellikleri simüle edilmiş ve yansıma katsayıları, ışıma örüntüleri ve empedans eşleşmesine odaklanılarak deneysel olarak doğrulanmıştır. Simülasyon, 2,432 GHz'de yaklaşık -30 dB'lik bir S11 yansıma katsayısı ile güçlü empedans eşleşmesi ortaya çıkardı ve bu da minimum güç kaybına işaret ediyor. Deneysel sonuçlar, RFID, Wi-Fi ve bazı tıbbi cihazlar gibi uygulamalar için uygun olan tasarımın dar bant çalışmasını ve neredeyse küresel radyasyon modelini doğrulayan simülasyonlarla yakından uyumludur. CR - Bayram M.C., Güzelbakan S., & Karpat E. (2021). Yapay sinir ağları ile çeyrek daire yarıklı mikroşerit yama antenin rezonans frekansının belirlenmesi. European Journal of Science and Technology, 32, 716-720. https://doi.org/10.31590/ejosat.1039855 CR - Comandini, G., Ting, V., Azarpeyvand, M., & Scarpa, F. (2023). Experimental and numerical studies on the hilbert fractal architecture as an acoustic metamaterial. Institute of Noise Control Engineering, 265(5), 2358-2361. https://doi.org/10.3397/IN_2022_0336 CR - Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A., & Raffo, A. (2016). Fractal reflectarray antennas: state of art and new opportunities. International Journal of Antennas and Propagation, 2016(1), 7165143. https://doi.org/10.1155/2016/7165143 CR - Das, S., Sen, R., & Sharma, S. (2024). Design and numerical analysis of a fractal tree shaped graphene based metasurface solar absorber. Plasmonics, 20, 1889-1899. https://doi.org/10.1007/s11468-024-02418-x CR - Gawade, R. P., & Dahotre, S. G. (2021). Microstrip patch antenna simulation using comsol multiphysics. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2108.03373 CR - Herbko, M., Lopato, P., Psuj, G., & Rajagopal, P. (2022). Application of selected fractal geometry resonators in microstrip strain sensors. IEEE Sensors Journal, 22(13), 12656-12663. https://doi.org/10.1109/JSEN.2022.3177932 CR - Jagtap, R. V., Ugale, A. D., & Alegaonkar, P. S. (2018). Ferro-nano-carbon split ring resonators a bianisotropic metamaterial in X-band: Constitutive parameters analysis. Materials Chemistry and Physics, 205, 366-375. https://doi.org/10.1016/j.matchemphys.2017.11.027 CR - Kim, Y., Lee, S. G., Kim, J., & Lee, J. H. (2022). Miniaturized square fractal ring patch unit cell for active reflective metasurface in C‐and X‐bands. Microwave and Optical Technology Letters, 64(12), 2179-2188. https://doi.org/10.1002/mop.33423 CR - Palanisamy, S., Thangaraju, B., Khalaf, O. I., Alotaibi, Y., Alghamdi, S., & Alassery, F. (2021). A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. Energies, 14(19), 6204. https://doi.org/10.3390/en14196204 CR - Ramesh, R., Sen, A., Sam, R. V., Abraham, N., & Beena S. (2023). Simulation study on the design and analysis of minkowski anti ısland fractal for micro-supercapacitors. 2023 IEEE 9th International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), 36-39. https://doi.org/10.1109/WIECON-ECE60392.2023.10456411 CR - Tzanov, V., Llobet, J., Torres, F., Perez-Murano, F., & Barniol, N. (2020). Multi-frequency resonance behaviour of a Si fractal NEMS resonator. Nanomaterials, 10(4), 811. https://doi.org/10.3390/nano10040811 CR - Ugale, A. D., Jagtap, R. V., Pawar, D., Datar, S., Kale, S. N., & Alegaonkar, P. S. (2016). Nano-carbon: Preparation, assessment, and applications for NH3 gas sensor and electromagnetic interference shielding. RSC Advances, 6(99), 97266-97275. https://doi.org/10.1039/C6RA17422A CR - Urul, B. (2022). Designing high gain reflect array antenna with fractal structures. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 408-415. https://doi.org/10.46519/ij3dptdi.1147283 CR - Uttley, Z., Santos Batista, J., Pirzada, B., & El-Shenawee, M. (2023). Experimental and computational analysis of broadband thz photoconductive antennas. International Journal of Antennas and Propagation, 2023(1), 6682627. https://doi.org/10.1155/2023/6682627 UR - https://doi.org/10.53433/yyufbed.1582558 L1 - https://dergipark.org.tr/tr/download/article-file/4354119 ER -