TY - JOUR T1 - İndoksakarb ve Abamektin İnsektisitlerinin Apis mellifera Üzerindeki Toksik Etkilerinin Moleküler Kenetlenme Yöntemi ile İncelenmesi AU - Sugeçti, Serkan PY - 2025 DA - May Y2 - 2025 DO - 10.63716/guffd.1595098 JF - Gazi Üniversitesi Fen Fakültesi Dergisi JO - GÜFFD PB - Gazi Üniversitesi WT - DergiPark SN - 2757-5543 SP - 131 EP - 138 VL - 6 IS - 1 LA - tr AB - İnsektisitler, hedef olmayan organizmalar üzerinde önemli etkilere yol açarak ekosistem dengesi ve biyolojik çeşitlilik açısından ciddi riskler oluşturmaktadır. Bu çalışmada, yaygın olarak kullanılan iki insektisit olan indoksakarb ve abamektinin, ekolojik ve tarımsal açıdan kritik bir tür olan Apis mellifera üzerindeki etkileri incelendi. Bu insektisitlerin A. mellifera’nın detoksifikasyon enzimi glutatyon-S-transferaz (GST) ve feromon bağlayıcı protein ile olan bağlanma afiniteleri değerlendirildi. Elde edilen bulgular, abamektinin feromon bağlayıcı protein ile daha yüksek bir bağlanma afinitesi (-12.7 kcal/mol) gösterdiğini, indoksakarbın ise nispeten düşük bir bağlanma enerjisine (-10.6 kcal/mol) sahip olduğunu ortaya koydu. GST ile bağlanma enerjileri indoksakarb için -9.3 kcal/mol, abamektin için ise -8.4 kcal/mol olarak belirlendi. Her iki insektisit, proteinlerle hidrofobik etkileşimler ve hidrojen bağları gibi spesifik bağlanmalar sergileyerek, feromon sinyalizasyonu ve detoksifikasyon mekanizmalarını potansiyel olarak bozabileceğini gösterdi. Bu çalışma, insektisitlerin biyotransformasyonunda GST'nin kritik rolünü ve feromon bağlayıcı proteinlerin insektisitlerden olumsuz etkilendiğini gösterdi. Bu çalışmada ayrıca, bu bileşiklerin bal arıları üzerindeki ekolojik riskleri belirlendi. KW - Apis mellifera KW - Ekolojik riskler KW - Detoksifikasyon KW - Feromon bağlayıcı protein CR - Antwi, F. B., & Reddy, G. V. P. (2015). Toxicological effects of pyrethroids on non-target aquatic insects. Environmental Toxicology and Pharmacology, 40(3), 915–923. https://doi.org/10.1016/j.etap.2015.09.023 CR - Phogat, A., Singh, J., Kumar, V., & Malik, V. (2022). Toxicity of the acetamiprid insecticide for mammals: a review. Environmental Chemistry Letters, 20(2), 1453–1478. https://doi.org/10.1007/s10311-021-01353-1 CR - Brasseur, M. V., Leese, F., Schäfer, R. B., Schreiner, V. C., & Mayer, C. (2023). Transcriptomic sequencing data illuminate insecticide-induced physiological stress mechanisms in aquatic non-target invertebrates. Environmental Pollution, 335, 122306. https://doi.org/10.1016/j.envpol.2023.122306 CR - Ju, D., Mota-Sanchez, D., Fuentes-Contreras, E., Zhang, Y.-L., Wang, X.-Q., & Yang, X.-Q. (2021). Insecticide resistance in the Cydia pomonella (L): Global status, mechanisms, and research directions. Pesticide Biochemistry and Physiology, 178, 104925. https://doi.org/10.1016/j.pestbp.2021.104925 CR - Sugeçti, S., Büyükgüzel, E., & Büyükgüzel, K. (2016). Laboratory assays of the effects of oxfendazole on Biological Parameters of Galleria mellonella (Lepidoptera: Pyralidae). Journal of Entomological Science, 51(2), 129–137. https://doi.org/10.18474/JES15-36.1 CR - Sugeçti, S., Kepekçi, A. B., & Büyükgüzel, K. (2023). Effects of midazolam on antioxidant levels, biochemical and metabolic parameters in eurygaster integriceps puton (Hemiptera: Scutelleridae) eggs parasitized by trissolcus semistriatus nees (Hymenoptera: Scelionidae). Bulletin of Environmental Contamination and Toxicology, 110(1), 4. https://doi.org/10.1007/s00128-022-03648-7 CR - Sertçelik, M., Sugeçti, S., Öztürkkan, F. E., & Hökelek, T. (2023). Synthesis, characterization and effects on biochemical parameters of model organism Galleria mellonella L. (Lepidoptera: Pyralidae) of Cu(II) 4-cyanobenzoate with 4-cyanopyridine complex. Chemical Papers, 77(9), 5331–5342. https://doi.org/10.1007/s11696-023-02865-6 CR - Moustafa, M. A. M., Fouad, E. A., Abdel-Mobdy, Y., Hamow, K. Á., Mikó, Z., Molnár, B. P., & Fónagy, A. (2021). Toxicity and sublethal effects of chlorantraniliprole and indoxacarb on Spodoptera littoralis (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 56(1), 115–124. https://doi.org/10.1007/s13355-020-00721-7 CR - Lemes, A. A. F., Sipriano-Nascimento, T. P., Vieira, N. F., Cardoso, C. P., Vacari, A. M., & De Bortoli, S. A. (2021). Acute and chronic toxicity of indoxacarb in two populations of Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 114(1), 298–306. https://doi.org/10.1093/jee/toaa260 CR - Vojoudi, S., Saber, M., Gharekhani, G., & Esfandiari, E. (2017). Toxicity and sublethal effects of hexaflumuron and indoxacarb on the biological and biochemical parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Iran. Crop Protection, 91, 100–107. https://doi.org/10.1016/j.cropro.2016.09.020 CR - Subala, S. P., Zubero, E. E., Alatorre-Jimenez, M. A., & Shivakumar, M. S. (2017). Pre-treatment with melatonin decreases abamectin induced toxicity in a nocturnal insect Spodoptera litura (Lepidoptera: Noctuidae). Environmental Toxicology and Pharmacology, 56, 76–85. https://doi.org/10.1016/j.etap.2017.08.025 CR - Lima, B. S. A., Rocha, F. A. D., Plata-Rueda, A., Zanuncio, J. C., Cossolin, J. F. S., Martínez, L. C., & Serrão, J. E. (2024). Abamectin induces mortality, inhibits food consumption, and causes histological changes in the midgut of the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Journal of Pest Science, 97(1), 213–227. https://doi.org/10.1007/s10340-023-01642-4 CR - Kolar, L., Kožuh Eržen, N., Hogerwerf, L., & Van Gestel, C. A. M. (2008). Toxicity of abamectin and doramectin to soil invertebrates. Environmental Pollution, 151(1), 182–189. https://doi.org/10.1016/j.envpol.2007.02.011 CR - Chang, H., Liu, Y., Yang, T., Pelosi, P., Dong, S., & Wang, G. (2015). Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis. Scientific Reports, 5(1), 13093. https://doi.org/10.1038/srep13093 CR - Jing, D., Zhang, T., Prabu, S., Bai, S., He, K., & Wang, Z. (2020). Molecular characterization and volatile binding properties of pheromone binding proteins and general odorant binding proteins in Conogethes pinicolalis (Lepidoptera: Crambidae). International Journal of Biological Macromolecules, 146, 263–272. https://doi.org/10.1016/j.ijbiomac.2019.12.248 CR - Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8), 688. https://doi.org/10.3390/insects12080688 CR - Papa, G., Maier, R., Durazzo, A., Lucarini, M., Karabagias, I. K., Plutino, M., Negri, I. (2022). The honey bee apis mellifera: an insect at the interface between human and ecosystem health. Biology, 11(2), 233. https://doi.org/10.3390/biology11020233 CR - Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334 CR - Moural, T. W., Koirala B K, S., Bhattarai, G., He, Z., Guo, H., Phan, N. T., Zhu, F. (2024). Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals. Chemosphere, 350, 141089. https://doi.org/10.1016/j.chemosphere.2023.141089 CR - Pesenti, M. E., Spinelli, S., Bezirard, V., Briand, L., Pernollet, J.-C., Campanacci, V., Cambillau, C. (2009). Queen bee pheromone binding protein pH-Induced domain swapping favors pheromone release. Journal of Molecular Biology, 390(5), 981–990. https://doi.org/10.1016/j.jmb.2009.05.067 CR - Li, G., Zhao, H., Guo, D., Liu, Z., Wang, H., Sun, Q., Guo, X. (2022). Distinct molecular impact patterns of abamectin on Apis mellifera ligustica and Apis cerana cerana. Ecotoxicology and Environmental Safety, 232, 113242. https://doi.org/10.1016/j.ecoenv.2022.113242 CR - Chen, X., Wang, F., Guo, H., Liu, X., Wu, S., Lv, L., & Tang, T. (2024). Uncovering hidden dangers: The combined toxicity of abamectin and lambda-cyhalothrin on honey bees. Science of The Total Environment, 933, 173126. https://doi.org/10.1016/j.scitotenv.2024.173126 CR - Choi, J.-Y., Chon, K., Kim, J., Vasamsetti, B. M. K., Kim, B.-S., Yoon, C.-Y., Lee, J.-H. (2024). Assessment of Llambda-cyhalothrin and spinetoram toxicity and their effects on the activities of antioxidant enzymes and acetylcholinesterase in honey bee (Apis mellifera) larvae. Insects, 15(8), 587. https://doi.org/10.3390/insects15080587 CR - Aslan, N., Büyükgüzel, E., & Büyükgüzel, K. (2019). Oxidative effects of gemifloxacin on some biological traits of drosophila melanogaster (Diptera: Drosophilidae). Environmental Entomology, 48(3), 667–673. https://doi.org/10.1093/ee/nvz039 CR - Sezer Tuncsoy, B., Tuncsoy, M., Gomes, T., Sousa, V., Teixeira, M. R., Bebianno, M. J., & Ozalp, P. (2019). Effects of copper oxide nanoparticles on tissue accumulation and antioxidant enzymes of galleria mellonella L. Bulletin of Environmental Contamination and Toxicology, 102(3), 341–346. https://doi.org/10.1007/s00128-018-2529-8 CR - Yorulmaz, S., & Ay, R. (2009). Multiple resistance, detoxifying enzyme activity, and inheritance of abamectin resistance in Tetranychus urticae Koch (Acarina: Tetranychidae). Turkish Journal of Agriculture and Forestry. https://doi.org/10.3906/tar-0809-15 CR - Xue, M., Pang, Y.-H., Li, Q.-L., & Liu, T.-X. (2010). Effects of four host plants on susceptibility of Spodoptera litura (Lepidoptera: Noctuidae) larvae to five insecticides and activities of detoxification esterases: Effect of host plant on susceptibility of S. litura to insecticides. Pest Management Science, 66(12), 1273–1279. https://doi.org/10.1002/ps.2005 CR - Adhikari, K., Sarma, R., & Khanikor, B. (2022). In-silico interactions of eugenol and temephos with metabolic detoxifying enzymes of Aedes aegypti (Diptera: Culicidae). International Journal of Tropical Insect Science, 42(2), 1987–1996. https://doi.org/10.1007/s42690-021-00727-w CR - Li, Y.-J., Gu, F.-M., Chen, H.-C., Liu, Z.-X., Song, W.-M., Wu, F.-A., Wang, J. (2024). Binding characteristics of pheromone-binding protein 1 in Glyphodes pyloalis to organophosphorus insecticides: Insights from computational and experimental approaches. International Journal of Biological Macromolecules, 260, 129339. https://doi.org/10.1016/j.ijbiomac.2024.129339 CR - Zhang, X.-Q., Yan, Q., Li, L.-L., Xu, J.-W., Mang, D., Wang, X.-L., Zhang, L.-W. (2020). Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides. Pesticide Biochemistry and Physiology, 164, 173–182. https://doi.org/10.1016/j.pestbp.2020.01.012 CR - Wu, C., Yin, N., Guo, Y., Wang, Z., & Liu, N. (2022). Two antenna-enriched odorant binding proteins in dioryctria abietella tuned to general odorants and insecticides. Insects, 13(12), 1145. https://doi.org/10.3390/insects13121145 UR - https://doi.org/10.63716/guffd.1595098 L1 - https://dergipark.org.tr/tr/download/article-file/4411132 ER -