TY - JOUR T1 - On the explicit Binet formula of the generalized ${{2}^{nd}}$ orders Recursive relation TT - Burada genelleştirilmiş ${{2}^{nd}}$ emir özyinelemeli ilişkisinin açık Binet formülü verilmiştir. AU - Verma, K. L. PY - 2025 DA - October Y2 - 2025 DO - 10.33773/jum.1595221 JF - Journal of Universal Mathematics JO - JUM PB - Gökhan ÇUVALCIOĞLU WT - DergiPark SN - 2618-5660 SP - 133 EP - 140 VL - 8 IS - 2 LA - en AB - In this paper, second-order generalized linear recurrence relations of the form ${{V}_{n}}\left( {p}_{1},{p}_{2}, {V}_{1},{V}_{2}\right)={{p}_{1}}{{V}_{n-1}}+{p}_{2}{{V}_{n-2}}$ , where ${{p}_{1}},{{p}_{2}},$ ${{V}_{1}}\left( =a \right)$ and $ {{V}_{2}}\left( =b \right) $ are arbitrary integers, are studied to derive Binet-like formulas in simplified and comprehensive generalized forms. By imposing specific constraints on the coefficients $\left( {{p}_{1}},{{p}_{2}} \right)$ and the initial terms $\left( {{V}_{1}},{{V}_{2}} \right)$, various well-known existing formulas, such as those for classical Fibonacci and Lucas sequences, emerge as special cases of this generalization. KW - ${{2}^{nd}}$ order Recursive relations KW - generaized generating function KW - Explicit Binet formulas N2 - Bu yazıda, ${{V__{n}}\left( {p__{1},{p__{2}, {V__{1} formundaki ikinci dereceden genelleştirilmiş doğrusal yineleme ilişkileri ,{V__{2}\right)={{p__{1}}{{V__{n-1}}+{p__{2}{{V__{n-2} }$ , burada ${{p__{1}},{{p__{2}},$ ${{V__{1}}\left( =a \right)$ ve $ {{V} _{2}}\left( =b \right) $ rastgele tamsayılardır ve basitleştirilmiş ve kapsamlı genelleştirilmiş formlarda Binet benzeri formüller türetmek için incelenmiştir. $\left( {{p__{1}},{{p__{2}} \right)$ katsayılarına ve $\left( {{V__{1}) başlangıç ​​terimlerine belirli kısıtlamalar uygulayarak },{{V__{2}} \right)$, klasik Fibonacci ve Lucas dizileri için olanlar gibi iyi bilinen çeşitli mevcut formüller, bu genellemenin özel durumları olarak ortaya çıkar. CR - Atkins, J., & Geist, R. (1987). Fibonacci numbers and computer algorithms. The College Mathematics Journal, 18, 328–337. CR - Basin, S., & Hoggatt, V. (1963). A primer on the Fibonacci sequence Part I. The Fibonacci Quarterly, 1, 61–68. CR - Bilgici, G. (2014). New generalizations of Fibonacci and Lucas sequences. American Mathematical Science, 8 (29), 429–1437. CR - Dresden, G. P. B., & Du, Z. (2014). A simplified Binet formula for k-generalized Fibonacci numbers. Journal of Integer Sequences, 17 (4), Article 14.4.7. CR - Edson, M., & Yayenie, O. (2009). A new generalization of Fibonacci sequences and extended Binet’s. Integers, 9, 639–654. CR - Ferguson, D. E. (1966). An expression for generalized Fibonacci numbers. The Fibonacci Quarterly, 4, 270–273. CR - George, A. H. (1969). Some formulae for the Fibonacci sequence with generalizations. The Fibonacci Quarterly, 113–130. CR - Horadam, A. F. (1961). A generalized Fibonacci sequence. The American Mathematical Monthly, 68, 455–459. CR - Jaiswal, D. V. (1969). On a generalized Fibonacci sequence. Labdev Journal of Science and Technology Part A, 7, 67–71. CR - Klein, S. T. (1991). Combinatorial representation of generalized Fibonacci numbers. The Fibonacci Quarterly, 29, 124–131. CR - Koshy, T. (2001). Fibonacci and Lucas numbers with applications. Wiley. CR - Krassimir, A. T., Liliya, A. C., & Dimitar, S. D. (1985). A new perspective to the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 23 (1), 21–28. CR - Lee, G. Y., Lee, S. G., & Shin, H. G. (1997). On the k-generalized Fibonacci matrix Qk. Linear Algebra and Its Applications, 251, 73–88. CR - Lee, G. Y., Lee, S. G., Kim, J. S., & Shin, H. K. (2001). The Binet formula and representations of k-generalized Fibonacci numbers. The Fibonacci Quarterly, 39 (2), 158–164. CR - Miller, M. D. (1971). On generalized Fibonacci numbers. The American Mathematical Monthly, 78, 1108–1109. CR - Pond, J. C. (1968). Generalized Fibonacci summations. The Fibonacci Quarterly, 6, 97–108. CR - Sburlati, G. (2002). Generalized Fibonacci sequences and linear congruence. The Fibonacci Quarterly, 40, 446–452. CR - Spickerman, W. R., & Joyner, R. N. (1984). Binet’s formula for the recursive sequence of order k. The Fibonacci Quarterly, 22, 327–331. CR - Verma, K. L. (in press). On the matrix representation of generalized sequence and applications. J. Mathematical Sciences. Comp. Math., 6 (1). CR - Waddill, M., & Sacks, L. (1967). Another generalized Fibonacci sequence. The Fibonacci Quarterly, 5 (3), 209–222. CR - Wolfram, A. (1998). Solving generalized Fibonacci recurrences. The Fibonacci Quarterly, 36, 129–145. 140 UR - https://doi.org/10.33773/jum.1595221 L1 - https://dergipark.org.tr/tr/download/article-file/4411720 ER -