TY - JOUR T1 - Makine Öğrenimi Modelleri ile Kırılganlık Seviyesi Sınıflandırma ve Veri Tipi Etkisi TT - Frailty Level Classification with Machine Learning Models and Data Type Effect AU - Özalp, Mehmet Halit AU - Ölçer, Didem PY - 2025 DA - October Y2 - 2025 DO - 10.35414/akufemubid.1595455 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe Üniversitesi WT - DergiPark SN - 2149-3367 SP - 1106 EP - 1113 VL - 25 IS - 5 LA - tr AB - Günümüzde kırılganlık, yaşlanan nüfus ile önemli bir sorun haline gelmektedir. Kırılganlık erken teşhis edilmesi ve uygun müdahaleler ile azaltılabilen veya tersine çevrilebilen geriatrik bir sendromdur. Bu nedenle bu çalışmada, KNN (K-Nearest Neighbors), Naïve Bayes, XGBoost (Extreme Gradient Boosting), RF (Random Forests), MLP (Multi-Layer Perceptron), 1D-CNN (1D Convolutional Neural Network) modelleri ile, STAIR testi sırasında toplanan EKG, üç eksenli ivme ölçer ve bu iki sensor verilerinin birleşiminden elde edilen üç ayrı veri seti üzerinde zaman alanı öznitelikleri kullanılarak kırılganlık sınıflandırma problemine çözüm aranmaktadır. Çalışmanın sonucunda RF ve XGBoost modellerinin en başarılı sonuçları verdiği, ayrıca EKG verilerinin kırılganlık tahmininde kullanımının akselerometre verilerinin kullanımından daha yüksek doğrulukta tahminleme yapılabildiği görülmüştür. Ayrıca Kırılganlık tahmininde daha doğru sonuçlar veren verilerin takibi ile birlikte, daha kesin sonuçlarla kişiler, kırılganlık durumlarını izleyebilecek ve sadece gerekli olduğunda bir uzman görüşüne danışacaktır. KW - EKG KW - İvmeölçer KW - Kırılganlık Sınıflandırma KW - Makine Öğrenmesi KW - Öznitelik Çıkarımı KW - STAIR testi N2 - Today, frailty is becoming an important problem with the ageing population. Frailty is a geriatric syndrome that can be reduced or reversed by early detection and appropriate interventions. Therefore, in this study, KNN (K-Nearest Neighbors), Naïve Bayes, XGBoost (Extreme Gradient Boosting), RF (Random Forests), MLP (Multi-Layer Perceptron), 1D-CNN (1D Convolutional Neural Network) models are used to solve the frailty classification problem by using time domain features on three separate data sets obtained from the combination of ECG, triaxial accelerometer and these two sensor data collected during the STAIR test. As a result of the study, it is seen that RF and XGBoost models give the most successful results, and the use of ECG data in fragility prediction can be predicted with higher accuracy than the use of accelerometer data. In addition, with the follow-up of data that give more accurate results in frailty prediction, people will be able to monitor their frailty status with more precise results and consult an expert opinion only when necessary. CR - Alan, A., ve Karabatak, M., 2020. Veri Seti - Sınıflandırma İlişkisinde Performansa Etki Eden Faktörlerin Değerlendirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), 531-540. https://doi.org/10.35234/fumbd.738007 CR - Aydemir, Ö., 2022. Dengesiz veri kümelerinin sınıflandırılmasında poligon alan metriğinin sınıflandırıcı performans değerlendirilmesi için kullanılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 194–205. https://doi.org/10.53433/yyufbed.1066340 CR - Aygör, H., Fadıloğlu, Ç., Şahin, S., Aykar, F., and Akçiçek, F., 2018. Validation of Edmonton Frail Scale into elderly Turkish population. Archives of Gerontology and Geriatrics, 76, 133-137. https://doi.org/10.1016/j.archger.2018.02.003 CR - Barrash, S., Shen, Y., and Giannakis, G.B., 2019. Scalable and Adaptive kNN for Regression Over Graphs. IEEE CAMSAP 2019, 241-245. https://doi.org/10.1109/CAMSAP45676.2019.9022509 CR - Bozkurt Keser, S., ve Keskin, K., 2023. Kalp Yetmezliği Hastalarının Sağ Kalım Tahmini: Sınıflandırmaya Dayalı Makine Öğrenmesi Algoritmalarının Bir Uygulaması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23, 362-369. https://doi.org/10.35414/akufemubid.1033377 CR - Breiman, L., 2001. Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 CR - Chen, T., and Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-784. https://doi.org/10.1145/2939672.2939785 CR - Chen, Y., Yu, Y., Yang, D., Zhang, W., Kouritas, V., and Chen, X., 2024. Developing and validating machine learning-based prediction models for frailty occurrence in those with chronic obstructive pulmonary disease. Journal of Thoracic Disease, 16(4), 2482-2498. https://doi.org/10.21037/jtd-24-416 CR - Erdaş, Ç.B., Atasoy, I., Açıcı, K., and Oğul, H., 2016. Integrating Features for Accelerometer-based Activity Recognition. Procedia Computer Science, 98, 522-527. https://doi.org/10.1016/j.procs.2016.09.070 CR - Erdaş, Ç.B., and Ölçer, D., 2022. Prediction of Frailty Grade Using Machine Learning Models. In 2022 Medical Technologies Congress (TIPTEKNO), Antalya, Türkiye, 1-4. https://doi.org/10.1109/TIPTEKNO56568.2022.9960172 CR - Erdaş, Ç.B., Sümer, E., and Kibaroğlu, S., 2021. Neurodegenerative disease detection and severity prediction using deep learning approaches. Biomedical Signal Processing and Control, 70, 103069. https://doi.org/10.1016/j.bspc.2021.103069 CR - Hoogendijk, E., Afilalo, J., Ensrud, K., Kowal, P., Onder, G., and Fried, L., 2019. Frailty: implications for clinical practice and public health. The Lancet, 394(10206), 1365-1375. https://doi.org/10.1016/s0140-6736(19)31786-6 CR - Kikuchi, H., Inoue, S., Amagasa, S., Fukushima, N., Machida, M., Murayama, H., Fujiwara, T., Chastin, S., Owen, N., & Shobugawa, Y. (2020). Associations of older adults' physical activity and bout-specific sedentary time with frailty status: Compositional analyses from the NEIGE study. Experimental Gerontology. https://doi.org/10.1016/j.exger.2020.111149 CR - Kiranyaz, S., Ince, T., and Gabbouj, M., 2015. Real-Time Patient-Specific ECG Classification by 1D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 63(3), 664-675. https://doi.org/10.1109/TBME.2015.2468589 CR - Leme, D.E.C., and Oliveira, C., 2023. Machine Learning Models to Predict Future Frailty in Community-Dwelling Middle-Aged and Older Adults: The ELSA Cohort Study. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 78(11), 2176–2184. https://doi.org/10.1093/gerona/glad127 CR - Mizuguchi, Y., Nakao, M., Nagai, T. (2024). Machine learning–based gait analysis to predict clinical frailty scale in elderly patients with heart failure. European Heart Journal - Digital Health, 5(2), 152–162. https://doi.org/10.1093/ehjdh/ztad082 CR - Panhwar, Y., Naghdy, F., Naghdy, G., Stirling, D., and Potter, J., 2019. Assessment of frailty: a survey of quantitative and clinical methods. BMC Biomedical Engineering, 1-20. https://doi.org/10.1186/s42490-019-0007-y CR - Razjouyan, J., Naik, A. D., Horstman, M. J., Kunik, M. E., Amirmazaheri, M., Zhou, H., Sharafkhaneh, A., & Najafi, B. (2018). Wearable sensors and the assessment of frailty among vulnerable older adults: An observational cohort study. Sensors, 18(5), 1336. https://doi.org/10.3390/s18051336 CR - Rolfson, D., Majumdar, S., Tsuyuki, R., Tahir, A., and Rockwood, K., 2006. Validity and reliability of the Edmonton Frail Scale. Age and Ageing, 35(5), 526-529. https://doi.org/10.1093/ageing/afl041 CR - Sano, A.V.D., Stefanus, A.A., Madyatmadja, E.D., Nindito, H., Purnomo, A., and Sianipar, C.P.M., 2023. Proposing a visualized comparative review analysis model on tourism domain using Naïve Bayes classifier. Procedia Computer Science, 227, 482-489. https://doi.org/10.1016/j.procs.2023.10.549 CR - Sokas, D., Butkuvienė, M., Tamulevičiūtė-Prascienė, E., Beigienė, A., Kubilius, R., Petrėnas, A., and Paliakaitė, B., 2022. Wearable-based signals during physical exercises from patients with frailty after open-heart surgery (version 1.0.0). PhysioNet. https://doi.org/10.13026/mp8k-7p27 CR - Szczepanowski, R., Uchmanowicz, I., Pasieczna, A.H., Sobecki, J., Katarzyniak, R., Kołaczek, G., Lorkiewicz, W., Kędras, M., Dixit, A., Biegus, J., Wleklik, M., Gobbens, R.J.J., Hill, L., Jaarsma, T., Hussain, A., Barbagallo, M., and Morabito, F.C., 2024. Application of machine learning in predicting frailty syndrome in patients with heart failure. Advances in Clinical and Experimental Medicine, 33(3), 309-315. https://doi.org/10.17219/acem/184040 CR - Wang, Y., Wei, S., Zuo, R., et al., 2024. Automatic and real-time tissue sensing for autonomous intestinal anastomosis using hybrid MLP-DC-CNN classifier-based optical coherence tomography. Biomedical Optics Express, 15(4), 2543-2557. https://doi.org/10.1364/BOE.521652 UR - https://doi.org/10.35414/akufemubid.1595455 L1 - https://dergipark.org.tr/tr/download/article-file/4412819 ER -