TY - JOUR T1 - Çift Sıralı Küme Örnekleme Tasarımı Altında Power Rayleigh Dağılımı Parametrelerinin Farklı Yöntemler ile Tahmini TT - Estimation of the Parameters of the Power Rayleigh Distribution Using Different Methods Under a Double Ranked Set Sampling Design AU - Gül, Hasan Hüseyin AU - Yeniay Koçer, Nurdan PY - 2025 DA - June Y2 - 2025 DO - 10.33484/sinopfbd.1597275 JF - Sinop Üniversitesi Fen Bilimleri Dergisi JO - Sinop Uni J Nat Sci PB - Sinop Üniversitesi WT - DergiPark SN - 2536-4383 SP - 110 EP - 133 VL - 10 IS - 1 LA - tr AB - Bu çalışmada, Basit Tesadüfi Örnekleme, Sıralı Küme Örneklemesi ve Çift Sıralı Küme Örneklemesi tasarımları altında parametre tahmini için Power Rayleigh dağılımının kullanımı incelenmiştir. Power Rayleigh dağılımına ilişkin parametrelerin tahmini için maksimum olabilirlik ve moment yöntemine dayalı tahmin edicileri tartışılmış ve bunların özellikleri basit rastgele örnekleme, sıralı küme örneklemesi ve çift sıralı küme örneklemesi tasarımları için analiz edilmiştir. Maksimum olabilirlik ve moment tahmin edicilerinin performanslarını yanlılıklar ve hata kare ortalamaları açısından değerlendirmek için kapsamlı bir Monte Carlo simülasyon çalışması yapılmıştır. Sonuçlar, çift sıralı küme örneklemesi altındaki moment tahmin edicisinin basit tesadüfi örnekleme ve sıralı küme örneklemesi tasarımlarından önemli ölçüde daha verimli olduğunu göstermektedir. KW - Çift sıralı küme örneklemesi KW - sıralı küme örneklemesi KW - parametre tahmini KW - Power Rayleigh dağılımı N2 - In this study, the use of the Power Rayleigh distribution for parameter estimation under simple random sampling, ranked set sampling and double ranked set sampling designs is investigated. Maximum likelihood and method of moment estimators for parameter estimation of the power Rayleigh distribution are discussed and their properties are analysed for the simple random sampling, ranked set sampling and double ranked set sampling designs. A comprehensive Monte Carlo simulation study was carried out to evaluate the performance of the maximum likelihood and moment estimators in terms of biases and mean square errors. The results show that the moment estimator under the double ranked set sampling desing is significantly more efficient than the simple random sampling and ranked set sampling designs. CR - McIntyre, G. A. (1952). A method for unbiased selective sampling, using ranked sets. Australian Journal of Agricultural Research, 3(4), 385-390. https://doi.org/10.1071/AR9520385 CR - Takahasi, K., & Wakimoto, K., (1968). On unbiased estimates of the population mean based on the sample stratified by means of ordering. annals of the ınstitude of statistical Mathematics, 21, 249-255. https://doi.org/10.1007/BF02911622 CR - Dell, D. R., & Clutter, J. L. (1972). Ranked set sampling theory with order statistics background. Biometrics, 28(2), 545-555. https://doi.org/10.2307/2556166 CR - Samawi, H. M., Ahmed, M. S., & Abu‐Dayyeh, W. (1996). Estimating the population mean using extreme ranked set sampling. Biometrical Journal, 38(5), 577-586. https://doi.org/10.1002/bimj.4710380506 CR - Muttlak, H. A. (1997). Median ranked set sampling. Journal of Applied Statistical Science, 6, 245-255. https://doi.org/10.12691/ajams-6-5-5 CR - Al‐Saleh M. F., & Al‐Hadrami S. A. (2003). Parametric estimation for the location parameter for symmetric distributions using moving extremes ranked set sampling with application to trees data. Environmetrics: The Official Journal of the International Environmetrics Society, 14(7), 651-664. https://doi.org/10.1002/env.610 CR - Al-Nasser, A. D. (2007). L ranked set sampling: A generalization procedure for robust visual sampling. Communications in Statistics—Simulation and Computation®, 36(1), 33-43. https://doi.org/10.1080/03610910601096510 CR - Bani-Mustafa A., Al-Nasser A. D., & Aslam M. (2011). Folded ranked set sampling for asymmetric distributions. Communications for Statistical Applications and Methods, 18(1):147-153. https://doi.org/10.5351/CKSS.2011.18.1.147 CR - Al-Saleh, M. F., & Al-Kadiri, M. A. (2000). Double-ranked set sampling. Statistics & Probability Letters, 48(2), 205-212. https://doi.org/10.1016/S0167-7152(99)00206-0 CR - Haq, A., Brown, J., Moltchanova, E., & Al-Omari, A. I. (2016). Paired double-ranked set sampling. Communications in Statistics-Theory and Methods, 45(10), 2873-2889. https://doi.org/10.1080/03610926.2015.1122043 CR - Hashemi Majd, M. H., & Saba, R. A. (2018). Robust extreme double ranked set sampling. Journal of Statistical Computation and Simulation, 88(9), 1749-1758. https://doi.org/10.1080/00949655.2018.1446212 CR - Khan, L., Shabbir, J., & Khalil, U. (2019). A new systematic ranked set-sampling scheme for symmetric distributions. Life Cycle Reliability and Safety Engineering, 8, 205-210. https://doi.org/10.1007/s41872-019-00080-5 CR - Samuh, M. H., Omar, M. H., & Hossain, M. P. (2021). Mixed double-ranked set sampling: A more efficient and practical approach. REVSTAT-Statistical Journal, 19(1), 145-160. https://doi.org/10.17713/ajs.v49i1.908 CR - Hanandeh, A., Al-Nasser, A. D., & Al-Omari, A. I. (2022). New double stage ranked set sampling for estimating the population mean. Electronic Journal of Applied Statistical Analysis, 15(2), 463-478. https://doi.org/10.1285/i20705948v15n2p485 CR - Helu, A., Abu-Salih, M., & Alkam, O. (2010). Bayes estimation of Weibull distribution parameters using ranked set sampling. Communications in Statistics—Theory and Methods, 39(14), 2533-2551. https://doi.org/10.1080/03610920903061039 CR - Al-Omari, A. I., & Al-Hadhrami, S. A. (2011). On maximum likelihood estimators of the parameters of a modified Weibull distribution using extreme ranked set sampling. Journal of Modern Applied Statistical Methods, 10(2), 18. https://doi.org/10.22237/jmasm/1320121020 CR - Elbatal, I. (2011). Parameters estimation of the log-logistic distribution using ranked set sampling. Journal of Applied Statistical Science, 19(1), 129. CR - Omar, A., & Ibrahim, K. (2013). Estimation of the shape and scale parameters of the pareto distribution using extreme ranked set sampling. Pakistan Journal of Statistics, 29(1). https://doi.org/10.1007/s00362-011-01132-9 CR - Hassan, A. S. (2013). Maximum likelihood and Bayes estimators of the unknown parameters for exponentiated exponential distribution using ranked set sampling. International Journal of Engineering Research and Applications, 3(1), 720-725. CR - Hussian, M. A. (2014). Bayesian and maximum likelihood estimation for Kumaraswamy distribution based on ranked set sampling. American Journal of Mathematics and Statistics, 4(1), 30-37. https://doi.org/10.5923/j.ajms.20140401.05 CR - Yousef, O. M., & Al-Subh, S. A. (2014). Estimation of Gumbel parameters under ranked set sampling. Journal of Modern Applied Statistical Methods, 13(2), 24. https://doi.org/10.22237/jmasm/1414815780 CR - Koshti, R. D., & Kamalja, K. K. (2017). Estimation of scale parameter of a bivariate Lomax distribution by ranked set sampling. Model Assisted Statistics and Applications, 12(2), 107-113. https://doi.org/10.3233/MAS-170387 CR - Khamnei, H. J., & Abusaleh, S. (2017). Estimation of parameters in the generalized logistic distribution based on ranked set sampling. International Journal of Nonlinear Science, 24(3), 154-160. https://doi.org/10.3233/MAS-17038 CR - Dey, S., Raheem, E., Mukherjee, S., & Ng, H. K. T. (2017). Two parameter exponentiated Gumbel distribution: properties and estimation with flood data example. Journal of Statistics and Management Systems, 20(2), 197-233. https://doi.org/10.1080/09720510.2016.1228261 CR - Esemen, M., & Gürler, S. (2018). Parameter estimation of generalized Rayleigh distribution based on ranked set sample. Journal of Statistical Computation and Simulation, 88(4), 615-628. https://doi.org/10.1080/00949655.2017.1398256 CR - He, X., Chen, W., & Qian, W. (2018). Maximum likelihood estimators of the parameters of the log-logistic distribution. Statistical Papers, 61(5), 1875-1892. https://doi.org/10.1007/s11766-021-3720-y CR - Samuh, M. H., Al-Omari, A. I., & Koyuncu, N. (2020). Estimation of the parameters of the new Weibull-Pareto distribution using ranked set sampling. https://doi.org/10.6092/issn.1973-2201/9368 CR - Taconeli, C. A., & Giolo, S. R. (2020). Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data. Computational Statistics, 35(4), 1827-1851. https://doi.org/10.1007/s00180-020-00953-9 CR - Yang, R., Chen, W., Yao, D., Long, C., Dong, Y., & Shen, B. (2020). The efficiency of ranked set sampling design for parameter estimation for the log-extended exponential–geometric distribution. Iranian Journal of Science and Technology, Transactions A: Science, 44(2), 497-507. https://doi.org/10.1007/s40995-020-00855-x CR - Koshti, R. D., & Kamalja, K. K. (2021). Parameter estimation of Cambanis-type bivariate uniform distribution with ranked set sampling. Journal of Applied Statistics, 48(1), 61-83. https://doi.org/10.1080/02664763.2019.1709808 CR - Pedroso, V. C., Taconeli, C. A., & Giolo, S. R. (2021). Estimation based on ranked set sampling for the two-parameter Birnbaum–Saunders distribution. Journal of Statistical Computation and Simulation, 91(2), 316-333. https://doi.org/10.1080/00949655.2020.1814287 CR - Al-Omari, A. I., Benchiha, S., & Almanjahie, I. M. (2021). Efficient estimation of the generalized Quasi-Lindley distribution parameters under ranked set sampling and applications. Mathematical Problems in Engineering, (1), 1-17. https://doi.org/10.1155/2021/5543890 CR - Sabry, M. H., & Almetwally, E. M. (2021). Estimation of the exponential pareto distributions parameters under ranked and double ranked set sampling designs. Pakistan Journal of Statistics and Operation Research, 17,(1), 169-184. http://dx.doi.org/10.18187/pjsor.v17i1.3448 CR - He, X. F., Chen, W. X., & Yang, R. (2021). Log-logistic parameters estimation using moving extremes ranked set sampling design. Applied Mathematics-A Journal of Chinese Universities, 36(1), 99-113. https://doi.org/10.1007/s11766-021-3720-y CR - Chen, W., Yang, R., Yao, D., & Long, C. (2021). Pareto parameters estimation using moving extremes ranked set sampling. Statistical Papers, 62(3), 1195-1211. https://doi.org/10.1007/s00362-020-01195-4 CR - Sevil, Y. C., & Yildiz, T. O. (2022). Gumbel’s bivariate exponential distribution: estimation of the association parameter using ranked set sampling. Computational Statistics, 37, 1695-1726. https://doi.org/10.1007/s00180-021-01176-2 CR - Al-Omari, A. I., Benchiha, S., & Almanjahie, I. M. (2022). Efficient estimation of two-parameter Xgamma distribution parameters using ranked set sampling design. Mathematics, 10(17), 3170. https://doi.org/10.3390/math10173170 CR - Nagy, H. F., Al-Omari, A. I., Hassan, A. S., & Alomani, G. A. (2022). Improved estimation of the inverted Kumaraswamy distribution parameters based on ranked set sampling with an application to real data. Mathematics, 10(21), 4102. https://doi.org/10.3390/math10214102 CR - Sabry, M. A. E., Muhammed, H. Z., Shaaban, M. & Nabih, A. E. H. (2022). Parameter estimation based on double ranked set samples wtih applications to Weibull distribution. Journal of Modern Applied Statistical Methods, 52(1), 267-277. https://doi.org/10.22237/jmasm/1637641960 CR - Yang, R., Chen, W., & Dong, Y. (2023). Log-extended exponential-geometric parameters estimation using simple random sampling and moving extremes ranked set sampling. Communications in Statistics-Simulation and Computation, 19(1), 25. https://doi.org/10.1080/03610918.2022.2154465 CR - Yeniay Koçer, N., Özdemir, Y. A., & Gökpınar, F. (2020). Sıralı küme örneklemesi ile iki yığın ortalaması farkı için bootstrap güven aralıklarının incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 651-661. https://doi.org/10.17714/gumusfenbil.647804 CR - Rayleigh, L. (1880). XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(60), 73-78. https://doi.org/10.1080/14786448008626893 CR - Bhat, A. A., & Ahmad, S. P. (2020). A new generalization of Rayleigh distribution: properties and applications. Pakistan Journal of Statistics, 36(3). UR - https://doi.org/10.33484/sinopfbd.1597275 L1 - https://dergipark.org.tr/tr/download/article-file/4421139 ER -