TY - JOUR T1 - Yeni Nesil Akıllı Kişisel Koruyucu Donanımların Sektörel Kullanımına Yönelik Niteliksel Bir İnceleme TT - A Qualitative Examination of the Sectoral Applications of Next-Generation Smart Personal Protective Equipment AU - Çabuk, Ahmet AU - Kartal, Hızırcan AU - Karataş, Enes Said AU - Şeker, Eray AU - Özkaya, Sıla AU - Engin, Maral AU - Salkın, Zeynep Nur AU - Karakuş, Saadet AU - Tepe, Serap PY - 2025 DA - June Y2 - 2025 DO - 10.7240/jeps.1598360 JF - International Journal of Advances in Engineering and Pure Sciences JO - JEPS PB - Marmara Üniversitesi WT - DergiPark SN - 2636-8277 SP - 109 EP - 123 VL - 37 IS - 2 LA - tr AB - Akıllı teknolojilerle donatılan yeni nesil kişisel koruyucu donanımlar (KKD), çalışanların güvenliği ve iş verimliliğini artırmak için geliştirilen bir çözümdür. Akıllı KKD'ler, ortam koşullarını ve çalışan hareketlerini izleme, potansiyel tehlikeleri önceden tespit etme ve kazaları engelleme potansiyeline sahiptir. Bununla birlikte, yüksek maliyetler, eğitim eksiklikleri, yasal düzenlemelerin yetersizliği ve kullanıcı mahremiyeti gibi engeller bu teknolojilerin geniş ölçekli uygulamalarını kısıtlamaktadır. Bu çalışma, KKD’lerin iş güvenliği alanındaki kullanımını incelemektedir. Çalışmada, iş kazalarını önlemek, çalışma ortamını izlemek ve çalışan sağlığını korumak için akıllı sensörler, nesnelerin interneti (IoT), veri analitiği ve yapay zekâ gibi teknolojilerin KKD’lere entegre edilmesi ele alınmaktadır. Çalışma kapsamında, farklı sektörlerdeki iş güvenliği uzmanlarıyla yapılan görüşmeler sonucunda, akıllı KKD'lerin avantajları ve sınırlılıkları tartışılmakta, Türkiye'deki uygulamalara dair sektör temsilcilerinin görüşleri analiz edilmektedir. Katılımcılar, yüksek risk içeren işlerde akıllı KKD’lerin zorunlu hale getirilmesini savunurken, veri gizliliği ve psikolojik baskı gibi sorunlara dikkat çekmiştir. Çalışmada akıllı KKD'lerin iş güvenliği kültürüne katkısı vurgulanırken, maliyet-fayda analizlerinin yapılması ve teknolojinin etkinliğini artıracak yasal düzenlemelerin geliştirilmesi önerilmektedir. KW - Akıllı kişisel koruyucu donanımlar KW - iş güvenliği KW - akıllı teknolojiler KW - veri gizliliği N2 - The next generation of personal protective equipment (PPE) equipped with smart technologies represents an innovative solution designed to enhance worker safety and operational efficiency. Smart PPE possesses the capability to monitor environmental conditions and employee movements, allowing for the proactive identification of potential hazards and the prevention of accidents. However, several barriers, including high costs, deficiencies in training, inadequate regulatory frameworks, and concerns regarding user privacy, limit the widespread adoption of these technologies. This paper examines the application of PPE in the field of occupational safety. It discusses the integration of technologies such as smart sensors, the Internet of Things (IoT), data analytics, and artificial intelligence into PPE to prevent workplace accidents, monitor work environments, and safeguard employee health. Through interviews conducted with occupational safety experts across various sectors, the paper explores the advantages and limitations of smart PPE and analyzes the perspectives of industry representatives regarding its implementation in Turkey. Participants advocate for the mandatory adoption of smart PPE in high-risk occupations while highlighting issues such as data privacy and psychological pressure. The paper emphasizes the contribution of smart PPE to the culture of occupational safety, recommending that cost-benefit analyses be conducted and that legal regulations be developed to enhance the effectiveness of the technology. CR - Bhattacharjee, S., Joshi, R., Chughtai, A. A., & Macintyre, C. R. (2019). Graphene Modified Multifunctional Personal Protective Clothing. Advanced Materials Interfaces, 6(21). https://doi.org/10.1002/admi.201900622 CR - Satapathy, S., Mishra, D., & Realyvásquez Vargas, A. (2022). Personal Protective Equipment for Farmers (pp. 69–78). https://doi.org/10.1007/978-3-030-88828-2_5 CR - Del Giudice, A., Dellutri, M., Di Francia, G., Formisano, F., & Loffredo, G. (2023). S. A. L. V. O.: Towards a Smart Personal Protective Equipment (pp. 282–288). https://doi.org/10.1007/978-3-031-08136-1_44 CR - Saidi, A., Gauvin, C., Ladhari, S., & Nguyen-Tri, P. (2021). Advanced functional materials for intelligent thermoregulation in personal protective equipment. Polymers, 13(21), 3711. https://doi.org/10.3390/polym13213711 CR - Tripathi, G. K., Soni, A., Singh, P., Bundela, P., Khiriya, P., Khare, P. S., Dixit, P., & Sundaramurthy, S. (2024). “Advanced Conversion Technologies for PPEs and Their Recent Research Trends” (pp. 53–71). https://doi.org/10.1007/978-981-97-4692-7_3 CR - Rossin, A. R. S., Spessato, L., Cardoso, F. da S. L., Caetano, J., Caetano, W., Radovanovic, E., & Dragunski, D. C. (2024). Electrospinning in personal protective equipment for healthcare work. Polymer Bulletin, 81(3), 1957–1980. https://doi.org/10.1007/s00289-023-04814-5 CR - Shi, J., Li, H., Xu, F., & Tao, X. (2021). Materials in advanced design of personal protective equipment: a review. Materials Today Advances, 12, 100171. https://doi.org/10.1016/j.mtadv.2021.100171 CR - Reaño, C., Riera, J. V., Romero, V., Morillo, P., & Casas-Yrurzum, S. (2024). A cloud-edge computing architecture for monitoring protective equipment. Journal of Cloud Computing, 13(1), 82. https://doi.org/10.1186/s13677-024-00649-1 CR - Kim, I.-D. (2024). ACS Nano Strengthening Global Ties in South Korea. ACS Nano, 18(38), 25907–25909. https://doi.org/10.1021/acsnano.4c11864 CR - Shen, J., Xiong, X., Li, Y., He, W., Li, P., & Zheng, X. (2021). Detecting safety helmet wearing on construction sites with bounding‐box regression and deep transfer learning. Computer-Aided Civil and Infrastructure Engineering, 36(2), 180–196. https://doi.org/10.1111/mice.12579 CR - Yang, X., Yu, Y., Shirowzhan, S., sepasgozar, S., & Li, H. (2020). Automated PPE-Tool pair check system for construction safety using smart IoT. Journal of Building Engineering, 32, 101721. https://doi.org/10.1016/j.jobe.2020.101721 CR - Ding, L., Jiang, W., & Zhou, C. (2022). IoT sensor-based BIM system for smart safety barriers of hazardous energy in petrochemical construction. Frontiers of Engineering Management, 9(1), 1–15. https://doi.org/10.1007/s42524-021-0160-6 CR - Carmona, A. M., Chaparro, A. I., Velásquez, R., Botero-Valencia, J., Castano-Londono, L., Marquez-Viloria, D., & Mesa, A. M. (2019). Instrumentation and Data Collection Methodology to Enhance Productivity in Construction Sites Using Embedded Systems and IoT Technologies. In Advances in Informatics and Computing in Civil and Construction Engineering (pp. 637–644). Springer International Publishing. https://doi.org/10.1007/978-3-030-00220-6_76 CR - Jiang, Y., & He, X. (2020). Overview of Applications of the Sensor Technologies for Construction Machinery. IEEE Access, 8, 110324–110335. https://doi.org/10.1109/ACCESS.2020.3001968 CR - Kanan, R., Elhassan, O., & Bensalem, R. (2018). An IoT-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Automation in Construction, 88, 73–86. https://doi.org/10.1016/j.autcon.2017.12.033 CR - Prabha, D., B, D., A, D. M., & K, S. (2021). IoT application for Safety and Health Monitoring System for Construction Workers. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), 453–457. https://doi.org/10.1109/ICOEI51242.2021.9452911 CR - Xu, Z., & Zheng, N. (2020). Incorporating Virtual Reality Technology in Safety Training Solution for Construction Site of Urban Cities. Sustainability, 13(1), 243. https://doi.org/10.3390/su13010243 CR - Yong, C., Xudong, H., Guojun, L., & Ping, W. (2021). Research on safety risk early warning of tunnel construction based on BIM and RFID Technology. E3S Web of Conferences, 293, 02048. https://doi.org/10.1051/e3sconf/202129302048 CR - Ahn, C. R., Lee, S., Sun, C., Jebelli, H., Yang, K., & Choi, B. (2019). Wearable Sensing Technology Applications in Construction Safety and Health. Journal of Construction Engineering and Management, 145(11). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001708 CR - E. Angelia, R., S. Pangantihon Jr, R., & F. Villaverde, J. (2021). Wireless Sensor Network for Safety Tracking of Construction Workers through Hard Hat. 2021 7th International Conference on Computing and Artificial Intelligence, 412–417. https://doi.org/10.1145/3467707.3467769 CR - Guo, H., Yu, Y., Xiang, T., Li, H., & Zhang, D. (2017). The availability of wearable-device-based physical data for the measurement of construction workers’ psychological status on site: From the perspective of safety management. Automation in Construction, 82, 207–217. https://doi.org/10.1016/j.autcon.2017.06.001 CR - Jebelli, H., Hwang, S., & Lee, S. (2018). EEG-based workers’ stress recognition at construction sites. Automation in Construction, 93, 315–324. https://doi.org/10.1016/j.autcon.2018.05.027 CR - Goar, V., Sharma, A., Yadav, N. S., Chowdhury, S., & Hu, Y.-C. (2023). IoT-Based Smart Mask Protection against the Waves of COVID-19. Journal of Ambient Intelligence and Humanized Computing, 14(8), 11153–11164. https://doi.org/10.1007/s12652-022-04395-7 CR - Kim, H., Tae, S., Zheng, P., Kang, G., & Lee, H. (2021). Development of IoT-Based Particulate Matter Monitoring System for Construction Sites. International Journal of Environmental Research and Public Health, 18(21), 11510. https://doi.org/10.3390/ijerph182111510 CR - Mayton, B., Dublon, G., Palacios, S., & Paradiso, J. A. (2012). TRUSS: Tracking Risk with Ubiquitous Smart Sensing. 2012 IEEE Sensors, 1–4. https://doi.org/10.1109/ICSENS.2012.6411393 CR - Fugini, M., Conti, G. M., Rizzo, F., Raibulet, C., & Ubezio, L. (2009). Wearable Services in Risk Management. 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 563–566. https://doi.org/10.1109/WI-IAT.2009.350 CR - Cheng, T., & Teizer, J. (2013). Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications. Automation in Construction, 34, 3–15. https://doi.org/10.1016/j.autcon.2012.10.017 CR - Liu, H., Song, J., & Wang, G. (2021). A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization. Sustainability, 13(16), 8860. https://doi.org/10.3390/su13168860 CR - Marks, E., & Teizer, J. (2012). Proximity Sensing and Warning Technology for Heavy Construction Equipment Operation. Construction Research Congress 2012, 981–990. https://doi.org/10.1061/9780784412329.099 CR - Guo, S. Y., Ding, L. Y., Luo, H. B., & Jiang, X. Y. (2016). A Big-Data-based platform of workers’ behavior: Observations from the field. Accident Analysis & Prevention, 93, 299–309. https://doi.org/10.1016/j.aap.2015.09.024 CR - Rey-Merchán, M. del C., Gómez-de-Gabriel, J. M., López-Arquillos, A., & Fernández-Madrigal, J. A. (2021). Virtual Fence System Based on IoT Paradigm to Prevent Occupational Accidents in the Construction Sector. International Journal of Environmental Research and Public Health, 18(13), 6839. https://doi.org/10.3390/ijerph18136839 CR - Huang, L., Fu, Q., He, M., Jiang, D., & Hao, Z. (2021). Detection algorithm of safety helmet wearing based on deep learning. Concurrency and Computation: Practice and Experience, 33(13). https://doi.org/10.1002/cpe.6234 CR - Abbasianjahromi, H., & Sohrab Ghazvini, E. (2022). Developing a Wearable Device Based on IoT to Monitor the Use of Personal Protective Equipment in Construction Projects. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(3), 2561–2573. https://doi.org/10.1007/s40996-021-00716-6 CR - Adjiski, V., Despodov, Z., Mirakovski, D., & Serafimovski, D. (2019). System Archıtecture To Brıng Smart Personal Protectıve Equıpment Wearables And Sensors To Transform Safety At Work In The Underground Mınıng Industry. Rudarsko-Geološko-Naftni Zbornik, 34(1), 37–44. https://doi.org/10.17794/rgn.2019.1.4 CR - Arcayena, R. D., Ballarta, A. D., Claros, K. N., & Pangantihon, R. S. (2019). Development of Arduino Microcontroller-based Safety Monitoring Prototype in the Hard Hat. Proceedings of the 2019 6th International Conference on Bioinformatics Research and Applications, 119–124. https://doi.org/10.1145/3383783.3383790 CR - Balakreshnan, B., Richards, G., Nanda, G., Mao, H., Athinarayanan, R., & Zaccaria, J. (2020). PPE Compliance Detection using Artificial Intelligence in Learning Factories. Procedia Manufacturing, 45, 277–282. https://doi.org/10.1016/j.promfg.2020.04.017 CR - Harito, C., Utari, L., Putra, B. R., Yuliarto, B., Purwanto, S., Zaidi, S. Z. J., Bavykin, D. V., Marken, F., & Walsh, F. C. (2020). Review—The Development of Wearable Polymer-Based Sensors: Perspectives. Journal of The Electrochemical Society, 167(3), 037566. https://doi.org/10.1149/1945-7111/ab697c CR - Ji, X., Gong, F., Yuan, X., & Wang, N. (2023). A high-performance framework for personal protective equipment detection on the offshore drilling platform. Complex & Intelligent Systems, 9(5), 5637–5652. https://doi.org/10.1007/s40747-023-01028-0 CR - Li, Y., Wei, H., Han, Z., Huang, J., & Wang, W. (2020). Deep Learning‐Based Safety Helmet Detection in Engineering Management Based on Convolutional Neural Networks. Advances in Civil Engineering, 2020(1). https://doi.org/10.1155/2020/9703560 CR - Slade Shantz, J. A., & Veillette, C. J. H. (2014). The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients. Frontiers in Surgery, 1. https://doi.org/10.3389/fsurg.2014.00039 CR - Ghosh, S., Dave, V., Sharma, P., Patel, A., & Kuila, A. (2023). Protective face mask: an effective weapon against SARS-CoV-2 with controlled environmental pollution. Environmental Science and Pollution Research, 31(29), 41656–41682. https://doi.org/10.1007/s11356-023-30460-5 CR - Rao, P. M., & Deebak, B. D. (2023). Security and privacy issues in smart cities/industries: technologies, applications, and challenges. Journal of Ambient Intelligence and Humanized Computing, 14(8), 10517–10553. https://doi.org/10.1007/s12652-022-03707-1 CR - Sung, C.-H., & Lu, M.-C. (2023). Protection of personal privacy under the development of the Internet of Things. Wireless Networks. https://doi.org/10.1007/s11276-023-03569-1 CR - Han, T.-S., Kim, D., Kwon, O.-Y., & Choa, S.-H. (2016). Study of Standardization and Test Certification for Wearable Smart Devices. Journal of the Microelectronics and Packaging Society, 23(4), 11–18. https://doi.org/10.6117/kmeps.2016.23.4.011 CR - Xu, Q., Chong, H.-Y., & Liao, P.-C. (2019). Collaborative information integration for construction safety monitoring. Automation in Construction, 102, 120–134. https://doi.org/10.1016/j.autcon.2019.02.004 CR - Kanun, 6331 Sayılı İş Sağlığı ve Güvenliği Kanunu, 30.06.2012 tarihli ve 28339 sayılı Resmî Gazete CR - Yönetmelik, Kişisel Koruyucu Donanım Yönetmeliği, 01.05.2019 tarihli ve 30761 sayılı Resmî Gazete CR - Yönetmelik, Kişisel Koruyucu Donanımların İşyerlerinde Kullanılması Hakkında Yönetmelik, 02.07.2013 tarihli ve 28695 sayılı Resmî Gazete UR - https://doi.org/10.7240/jeps.1598360 L1 - https://dergipark.org.tr/tr/download/article-file/4426058 ER -