TY - JOUR T1 - Investigation of Heart Rate Variability of 14-18 Aged Swimmers: Loading and Recovery In Different Swimming Styles In Short Distance (50 M) TT - 14-18 Yaş Yüzücülerin Kalp Atım Hızı Değişkenliklerinin İncelenmesi: Kısa Mesafe (50 M) Farklı Yüzme Stillerinde Yüklenme ve Toparlanma AU - İnan, Mehmet AU - Arabacı, Ramiz AU - Soyal, Mehmet AU - Arabacı, Mert PY - 2025 DA - April Y2 - 2025 DO - 10.17155/omuspd.1602941 JF - Spor ve Performans Araştırmaları Dergisi JO - SPD PB - Ondokuz Mayıs Üniversitesi WT - DergiPark SN - 1309-8543 SP - 121 EP - 136 VL - 16 IS - 1 LA - en AB - The present study aimed to compare the effects of different swimming styles (freestyle, backstroke, breaststroke, butterfly) on heart rate variability (HRV) before, during and after 50m sprint performance. In the literature, some studies directly compare the differences in recovery time depending on swimming distance. However, to our knowledge, no study investigates the differences in recovery time according to swimming style; this study aims to fill this gap. Swimmers participated in the study as volunteers (mean age 15.4±1.2 years; height 175.3±6.8 cm; weight 64.9±7.6 kg). The study was implemented with a randomized crossover design and each participant completed the HRV measurements by swimming 50 m at maximum speed in four different swimming styles. Time-domain (RR-SDNN-RMSSD) and frequency-domain (VLF-LF-HF) data of HRV were collected before (Pre-test), during (Test), and immediately after (Post-test) the 50m swim with the Polar V800 device. The data were analyzed by two-way ANOVA test (3-time x 4-intervention). From the time domain data of the participants, the interaction of time and style RR (Fs*t=2.670, η_p^2=0.08), SDNN (Fs*t=2.251, η_p^2=0.07) was found to have a statistically significant difference, but RMSSD (Fs*t=0.746, η_p^2=0.01) was found to have no statistically significant difference. From the frequency domain data, time and style interaction of VLF (Fs*t=2.590, η_p^2=0.08), LF (Fs*t=4.271, η_p^2=0.13), HF (Fs*t3.156, η_p^2=0.10) were found to have statistically significant differences. The differences in the results vary depending on the technical requirements of the swimming styles and their demands on the energy systems. The fact that each style utilizes different muscle groups and metabolic pathways to different degrees is one of the main reasons for these variations in recovery. In short-distance (50m) swimming performance in freestyle, backstroke, breaststroke, and butterfly swimming styles, the HRV before, during, and after swimming at maximum speed may have different effects on time and frequency domain parameters. In conclusion, the swimming style's technical challenges and predominant energy systems should be considered during training planning, ensuring an appropriate balance of loading and rest that accounts for recovery time and the physiological demands of each style. KW - Heart Rate Variability KW - Recovery KW - Swimming N2 - Bu çalışmanın amacı, farklı yüzme stillerinin (serbest, sırtüstü, kurbağalama, kelebek) 50m kısa mesafe performansı öncesi, sırasında ve sonrası kalp atım hızı değişkenliğine (KAHD) etkilerini karşılaştırmaktır. Literatürde, yüzme mesafesine bağlı olarak toparlanma süresindeki farklılıkları doğrudan karşılaştıran çalışmalar bulunmaktadır, ancak bildiğimiz kadarıyla yüzme stillerine göre toparlanma süresindeki farklılıkları araştıran bir çalışma bulunmamaktadır, bu çalışma bu boşluğu doldurmayı amaçlamaktadır. Araştırmaya yüzücüler gönüllü olarak katılmıştır (ortalama yaş 15,4±1,2 yıl; boy 175,3±6,8 cm; vücut ağırlığı 64,9±7,6 kg). Çalışma, rastgele çaprazlama tasarımıyla uygulanmış ve her katılımcı, dört farklı yüzme stilinde 50m mesafeyi maksimum hızda yüzerek KAHD ölçümlerini tamamlamıştır. Polar V800 cihazı ile 50m yüzme öncesinde (Ön-test), sırasında (Test) ve hemen sonrasında (Son-test) olarak, KAHD'nin Zaman-Alan (RR-SDNN-RMSSD) ve Frekans-Alan (VLF-LF-HF) verileri toplanmıştır. Elde edilen Veriler, çift yönlü varyans analizi (Anova) testi (3-zaman x 4-stil) ile analiz edilmiştir. Katılımcıların Zaman-alan eksenli verilerinden; RR değerlerinin Zaman ve stil etkileşimi RR (Fs*t=2.670, η_p^2=0.08), SDNN değerlerinin zaman ve stil etkileşimi (Fs*t=2,25, η_p^2 =0,07) arasında istatistiksel olarak anlamlı fark bulunurken, RMSSD değerlerinde zaman ve stil etkileşimi (Fs*t=0,746, η_p^2=0,01) arasında anlamlı bir fark tespit edilmemiştir. Frekans-Alan Eksenli Değerlerinden; VLF verilerinin Zaman ve stil etkileşimi (Fs*t=2,590, η_p^2=0,08). LF verilerinin Zaman ve stil etkileşimi (Fs*t=4,271, η_p^2=0,13). HF verilerinin Zaman ve stil etkileşimi, (Fs*t3,156, η_p^2=0,10) verileri arasında istatiksel olarak anlamlı sonuç tespit edilmiştir. Sonuçlardaki farklılıklar, yüzme stillerinin teknik gereksinimlerine ve enerji sistemleri üzerindeki taleplerine bağlı olarak değişir. Her stilin farklı kas gruplarını ve metabolik yolları farklı derecelerde kullanması, toparlanmadaki bu farklılıkların ana nedenlerinden biridir. Serbest, sırtüstü, kurbağalama ve kelebek yüzme stillerinde kısa mesafe (50m) yüzme performansında, maksimum hızda yüzme öncesi, sırası ve sonrasındaki KAHD, zaman ve frekans alanı parametreleri üzerinde farklı etkilere sahip olabilir. Sonuç olarak, antrenman planlaması yapılırken yüzme stilinin teknik zorlukları ve baskın enerji sistemleri göz önünde bulundurulmalı, her stilin gerektirdiği toparlanma süresi ve fizyolojik talepler dikkate alınarak uygun yük ve dinlenme dengesi sağlanmalıdır. CR - Agorastos, A., Mansueto, A. C., Hager, T., Pappi, E., Gardikioti, A., & Stiedl, O. (2023). Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines, 11(6), 1591. https://doi.org/10.3390/biomedicines11061591 CR - Alparslan, T., Arabacı, R., Küçük, N., & Güngör, A. K. (2023). Anaerobik eşik ve anaerobik güç ilişkisinin kalp atım hızı değişkenliğinin non-invazif değerlendirilmesi. Spor ve Performans Araştırmaları Dergisi, 14(2), 249-262. https://doi.org/10.17155/omuspd.1294432 CR - Battaglia, C., D’Artibale, E., Fiorilli, G., Piazza, M., Tsopani, D., Giombini, A., … et al. (2014). Use of video observation and motor imagery on jumping performance in national rhythmic gymnastics athletes. Human Movement Science, 38, 225–234. https://doi.org/10.1016/j.humov.2014.10.001 CR - Behm, D. G., & Chaouachi, A. (2011). A Review of the acute effects of static and dynamic stretching on performance. European Journal of Applied Physiology, 111(11), 2633–2651. https://doi.org/10.1007/s00421-011-1879-2 CR - Borg, G. (1998). Borg’s perceived exertion and pain scales. Human Kinetics. CR - Ceylan, L., Bilen, E., Eliöz, M., & Küçük, H. (2022). Comparison of motivation levels of outdoor and ındoor athletes studying physical education and sports training. Journal of Educational Issues, 8(1), 629. https://doi.org/10.5296/jei.v8i1.19860 CR - Cohen, J. (2013). Statistical power analysis for the behavioral sciences, Routledge. CR - D’Ascenzi, F., Alvino, F., Natali, B. M., Cameli, M., Palmitesta, P., Boschetti, G., … et al. (2014). Precompetitive assessment of heart rate variability in elite female athletes during play offs. Clinical Physiology and Functional İmaging, 34(3), 230–236. https://doi.org/10.1111/cpf.12088 CR - Erdil, G., Yorulmaz, H., Olcucu, B., & Bulbul, A. (2016). Effect of 8 weeks bilateral football training program for 11-12 age group children over learning transfer and permanency of the learning transfer. International Journal of Academic Research, 8. CR - Esco, M. R., & Flatt, A. A. (2014). Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. Journal of Sports Science & Medicine, 13(3), 535. CR - Esco, M. R., Flatt, A. A., & Nakamura, F. Y. (2016). Initial weekly hrv response is related to the prospective change in vo2max in female soccer players. International Journal of Sports Medicine, 37(6), 436–441. https://doi.org/10.1055/s-0035-1569342 CR - Escorihuela, R. M., Capdevila, L., Castro, J. R., Zaragozà, M. C., Maurel, S., Alegre, J., … et al. (2020). Reduced heart rate variability predicts fatigue severity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis. Journal of Translational Medicine, 18(1), 4. https://doi.org/10.1186/s12967-019-02184-z CR - Flatt, A. A., Hornikel, B., & Esco, M. R. (2017). Heart rate variability and psychometric responses to overload and tapering in collegiate sprint-swimmers. Journal of Science and Medicine İn Sport, 20(6), 606–610. https:// doi.org/10.1016/j.jsams.2016.10.017 CR - Fortes, L. D. S., Lira, H. A. A., da S., Lima, R. C. R. de, Almeida, S. S., & Ferreira, M. E. C. (2016). O Treinamento mental gera efeito positivo na ansiedade competitiva de jovens nadadores? Brazilian Journal of Kinanthropometry and Human Performance, 18(3), 353. https://doi.org/10.5007/1980-0037.2016v18n3p353 CR - Güngör, A. K., Topçu, H., Arabacı, R., & Şahin, Ş. (2022). The effects of different recovery methods on blood pressureand heart rate variability ın hearing ımpaired athletes. Spor ve Performans Araştırmaları Dergisi, 13(3), 317-332. https://doi.org/10.17155/omuspd.1197078 CR - Hellard, P., Guimaraes, F., Avalos, M., Houel, N., Hausswirth, C., & Toussaint, J. F. (2011). Modeling the association between hr variability and illness in elite swimmers. Medicine and Science in Sports and Exercise, 43(6), 1063–1070. https://doi.org/10.1249/MSS.0b013e318204de1c CR - Ieno, C., Baldassarre, R., Pennacchi, M., La Torre, A., Bonifazi, M., & Piacentini, M. F. (2021). Monitoring rating of perceived exertion time in zone: a novel method to quantify training load in elite open-water swimmers? International Journal of Sports Physiology and Performance, 16(10), 1551–1555. https://doi.org/10.1123/ ijspp.2020-0707 CR - Jerath, R., Syam, M., & Ahmed, S. (2023). The Future of Stress Management: Integration of Smartwatches and HRV Technology. Sensors, 23(17), 7314. https://doi.org/10.3390/s23177314 CR - Kamandulis, S., Juodsnukis, A., Stanislovaitiene, J., Zuoziene, I. J., Bogdelis, A., Mickevicius, M., … et al. (2020). Daily resting heart rate variability in adolescent swimmers during 11 weeks of training. International Journal of Environmental Research and Public Health, 17(6), 2097. https://doi.org/10.3390/ijerph17062097 CR - Koenig, J., Jarczok, M. N., Wasner, M., Hillecke, T. K., & Thayer, J. F. (2014). Heart rate variability and swimming. Sports Medicine, 44(10), 1377–1391. https://doi.org/10.1007/s40279-014-0211-9 CR - Küçük, H. (2018). Aerobik ve anaerobik kapasitenin serum irisin, leptin, ghrelin seviyelerine etkisi [Doktora tezi, Ondokuz Mayıs Üniversitesi] Sağlık Bilimleri Enstitüsü, Samsun. CR - Lakin, R., Notarius, C., Thomas, S., & Goodman, J. (2013). Effects of moderate-intensity aerobic cycling and swim exercise on post-exertional blood pressure in healthy young untrained and triathlon-trained men and women. Clinical Science, 125(12), 543–553. https://doi.org/10.1042/CS20120508 CR - Liu, X., Xiang, L., & Tong, G. (2020). Predictive values of heart rate variability, deceleration and acceleration capacity of heart rate in post-infarction patients with lvef ≥35. annals of noninvasive electrocardiology, The Official Journal of the International Society for Holter and Noninvasive Electrocardiology, Inc, 25(6), e12771. https://doi.org/10.1111/anec.12771 CR - Maier, G., Delezie, J., Westermark, P. O., Santos, G., Ritz, D., & Handschin, C. (2022). Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. The Journal of Physiology, 600(4), 769–796. https://doi.org/10.1113/JP281535 CR - Matuz, A., van der Linden, D., Darnai, G., & Csathó, Á. (2022). Generalisable machine learning models trained on heart rate variability data to predict mental fatigue. Scientific Reports, 12(1), 20023. https://doi.org/10.1038/s41598-022-24415-y CR - Merati, G., Maggioni, M. A., Invernizzi, P. L., Ciapparelli, C., Agnello, L., Veicsteinas, A., … et al. (2015). Autonomic modulations of heart rate variability and performances in short-distance elite swimmers. European Journal of Applied Physiology, 115(4), 825–835. https://doi.org/10.1007/s00421-014-3064-x CR - Morales, J., Garcia, V., García-Massó, X., Salvá, P., Escobar, R., & Buscà, B. (2013). The use of heart rate variability in assessing precompetitive stress in high-standard judo athletes. International Journal of Sports Medicine, 34(2), 144–151. https://doi.org/10.1055/s-0032-1323719 CR - Moser, C., Sousa, C. V., Olher, R. R., Nikolaidis, P. T., & Knechtle, B. (2020). Pacing in world-class age group swimmers in 100 and 200 m freestyle, backstroke, breaststroke, and butterfly. International Journal Of Environmental Research and Public Health, 17(11), 3875. https://doi.org/10.3390/ijerph17113875 CR - Nakamura, F. Y., Flatt, A. A., Pereira, L. A., Ramirez-Campillo, R., Loturco, I., & Esco, M. R. (2015). Ultra-short-term heart rate variability is sensitive to training effects in team sports players. Journal of Sports Science & Medicine, 14(3), 602–605. CR - Proietti, R., di Fronso, S., Pereira, L. A., Bortoli, L., Robazza, C., Nakamura, F. Y., … et al. (2017). Heart rate variability discriminates competitive levels in professional soccer players. Journal of Strength and Conditioning Research, 31(6), 1719–1725. https://doi.org/10.1519/JSC.0000000000001795 CR - Sato, S., Basse, A. L., Schönke, M., Chen, S., Samad, M., Altıntaş, A., … et al. (2019). Time of exercise specifies the ımpact on muscle metabolic pathways and systemic energy homeostasis. Cell Metabolism, 30(1), 92–110. e4. https://doi.org/10.1016/j.cmet.2019.03.013 CR - Scherr, J., Wolfarth, B., Christle, J. W., Pressler, A., Wagenpfeil, S., & Halle, M. (2013). Associations between borg’s rating of perceived exertion and physiological measures of exercise intensity. European Journal of Applied Physiology, 113(1), 147–155. https://doi.org/10.1007/s00421-012-2421-x CR - Schönke, M., Esser, K. A., & Gabriel, B. M. (2023). Circadian rhythms and exercise in cardiometabolic health. Frontiers in Endocrinology, 14, 1180851. https://doi.org/10.3389/fendo.2023.1180851 CR - Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258 CR - Tarvainen, M. P., Lipponen, J., Niskanen, J. P., & Ranta-Aho, P. (2017). Kubios HRV version 3-user’s guide. University of Eastern Finland. CR - Triposkiadis, F., Ghiokas, S., Skoularigis, I., Kotsakis, A., Giannakoulis, I., & Thanopoulos, V. (2002). Cardiac adaptation to intensive training in prepubertal swimmers. European Journal of Clinical İnvestigation, 32(1), 16–23. https://doi.org/10.1046/j.0014-2972.2001.00939.x CR - Wang, Y., Zhou, L., Jiang, H., & Yu, L. (2022). Editorial: autonomic nervous system and cardiovascular diseases: from brain to heart. Frontiers in Physiology, 13, 884832. https://doi.org/10.3389/fphys.2022.884832 CR - Xu, J., & Chen, W. (2021). Impact of water temperature on heart rate variability during bathing. Life (Basel, Switzerland), 11(5), 378. https://doi.org/10.3390/life11050378 UR - https://doi.org/10.17155/omuspd.1602941 L1 - https://dergipark.org.tr/tr/download/article-file/4446875 ER -