TY - JOUR T1 - Elektroeğirme Yöntemi ile Üretilen Antimikrobiyal Nanolif Membranlarda Lycopodium Özütü Etkisinin İncelenmesi TT - Investigation of the Effect of Lycopodium Extract on Antimicrobial Nanofibrous Membranes Fabricated by Electrospinning Method AU - Yüksekdağ, Ayşe PY - 2024 DA - December Y2 - 2024 DO - 10.21605/cukurovaumfd.1606113 JF - Çukurova Üniversitesi Mühendislik Fakültesi Dergisi PB - Çukurova Üniversitesi WT - DergiPark SN - 2757-9255 SP - 1027 EP - 1038 VL - 39 IS - 4 LA - tr AB - Bu çalışmada, Lycopodium bitkisinden elde edilen fenolik bileşenler kullanılarak çevreci, ekonomik ve büyük ölçekli üretilebilen antimikrobiyal nanolif membranlar geliştirilmiştir. Bitki özütü, oda sıcaklığında polimer çözücüsü DMF ile karıştırılıp süzülerek elde edilmiştir. %12 PAN polimeri ile farklı konsantrasyonlarda Lycopodium özütü içeren çözeltiler hazırlanmış ve elektroeğirme yöntemiyle nanolif membranlar üretilmiştir. Üretilen dört farklı membran (%0, %1, %3, %5 oranlarında bitki özütü içeren membranlar) SEM görüntüleriyle incelenmiş, bitki konsantrasyonunun artışıyla boncuksu yapıların azaldığı ve nanolif kalınlıklarının arttığı gözlenmiştir. %5 oranında özüt içeren membranda nanolif kalınlığı 607 nm’ye çıkarak kontrol membranından yaklaşık üç kat daha kalın olmuştur. FT-IR analizinde 5L membranında oksijen bağlarını temsil eden piklerin kaybolduğu ve 3L membranında antimikrobiyal etkinin başarılı bir şekilde elde edildiği tespit edilmiştir. KW - Elektroeğirme KW - Nanolif KW - Lycopodium KW - Antimikrobiyal N2 - In this study, antimicrobial nanofiber membranes were developed using phenolic components obtained from the Lycopodium plant, which are environmentally friendly, economical, and suitable for large-scale production. The plant extract was mixed with the polymer solvent DMF at room temperature and then filtered to obtain the solution. Solutions containing 12% PAN polymer and varying concentrations of Lycopodium extract were prepared, and nanofiber membranes were produced using the electrospinning method. Four different membranes (membranes containing 0%, 1%, 3%, 5% plant extracts) were examined using SEM images, revealing a decrease in bead-like structures and an increase in nanofiber thickness with higher plant concentrations. The nanofiber thickness in the membrane having 5% plant extract increased to 607 nm, making it approximately three times thicker than the control membrane. FT-IR analysis showed that the peaks representing oxygen bonds were absent in the 5L membrane, and the 3L membrane demonstrated successful antimicrobial activity. CR - 1. Xue, J., Wu, T., Dai, Y., Xia, Y., 2019. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298-5415. CR - 2. Shi, R., Ye, J., Li, W., Zhang, J., Li, J., Wu, C., Zhang, L., 2019. Infection-responsive electrospun nanofiber mat for antibacterial guided tissue regeneration membrane. Materials Science and Engineering: C, 100, 523- 534. CR - 3. Xue, C., Hsu, K.M., Chiu, C.Y., Chang, Y.K., Ng, I.S., 2021. Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine. Chemosphere, 266, 128967. CR - 4. Mousa, H.M., Hamdy, M., Yassin, M.A., Seleman, M.M.E.S., Abdel-Jaber, G.T., 2022. Characterization of nanofiber composite membrane for high water flux and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129655. CR - 5. Shalaby, T., Hamad, H., Ibrahim, E., Mahmoud, O., Al-Oufy, A., 2018. Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. Ecotoxicology and Environmental Safety, 162, 354-364. CR - 6. Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S., Yang, F., 2009. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43(6), 1489-1512. CR - 7. Li, M., Wang, D., Xiao, R., Sun, G., Zhao, Q., Li, H., 2013. A novel high flux poly (trimethylene terephthalate) nanofiber membrane for microfiltration media. Separation and Purification Technology, 116, 199-205. CR - 8. HMTShirazi, R., Mohammadi, T., Asadi, A.A., Tofighy, M.A., 2022. Electrospun nanofiber affinity membranes for water treatment applications: A review. Journal of Water Process Engineering, 47, 102795. CR - 9. Tian, J.Y., Ernst, M., Cui, F., Jekel, M., 2013. Correlations of relevant membrane foulants with UF membrane fouling in different waters. Water Research, 47(3), 1218-1228. CR - 10. Gao, Y., Qin, J., Wang, Z., Østerhus, S.W., 2019. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. Journal of Membrane Science, 587, 117136. CR - 11. Yu, Y., Zhou, Z., Huang, G., Cheng, H., Han, L., Zhao, S., Meng, F., 2022. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. Water Research, 222, 118901. CR - 12. Preda, N., Costas, A., Beregoi, M., Apostol, N., Kuncser, A., Curutiu, C., Enculescu, I., 2020. Functionalization of eggshell membranes with CuO–ZnO based p–n junctions for visible light induced antibacterial activity against Escherichia coli. Scientific Reports, 10(1), 20960. CR - 13. Padovani, G.S., Sanches, A.O., Moura Aouada, M.R., Malmonge, L.F., de Paula, F.R., 2024. Photocatalytic and antimicrobial efficacy of PVDF/TiO2 membranes fabricated by solution blow spinning. Journal of Applied Polymer Science, 141(1), e54761. CR - 14. Silva, M.A., Felgueiras, H.P., De Amorim, M.T.P., 2020. Carbon based membranes with modified properties: Thermal, morphological, mechanical and antimicrobial. Cellulose, 27, 1497-1516. CR - 15. Luo, D., Wang, C., Tong, Y., Liu, C., Xiao, Y., Zhu, Z., Wang, Y., 2020. An NIF-doped ZIF-8 hybrid membrane for continuous antimicrobial treatment. RSC Advances, 10(13), 7360-7367. CR - 16. Geng, Q., Dong, S., Li, Y., Wu, H., Yang, X., Ning, X., Yuan, D., 2022. High-performance photoinduced antimicrobial membrane toward efficient PM2. 5-0.3 capture and oil-water separation. Separation and Purification Technology, 284, 120267. CR - 17. Jackson, J.C., Camargos, C.H., Liu, C., Martinez, D.S., Paula, A.J., Rezende, C.A., Faria, A.F., 2024. Antimicrobial activity of thin-film composite membranes functionalized with cellulose nanocrystals and silver nanoparticles via one-pot deposition and layer-by-layer assembly. Environmental Science: Water Research & Technology, 10(3), 639-651. CR - 18. Homaeigohar, S., Boccaccini, A.R., 2020. Antibacterial biohybrid nanofibers for wound dressings. Acta biomaterialia, 107, 25-49. CR - 19. Chouhan, D., Chakraborty, B., Nandi, S.K., Mandal, B.B., 2017. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta biomaterialia, 48, 157- 174. CR - 20. Paskiabi, F.A., Bonakdar, S., Shokrgozar, M.A., Imani, M., Jahanshiri, Z., Shams-Ghahfarokhi, M., Razzaghi-Abyaneh, M., 2017. Terbinafine-loaded wound dressing for chronic superficial fungal infections. Materials Science and Engineering: C, 73, 130-136. CR - 21. Bulman, S.E., Tronci, G., Goswami, P., Carr, C., Russell, S.J., 2017. Antibacterial properties of nonwoven wound dressings coated with Manuka honey or methylglyoxal. Materials, 10(8), 954. CR - 22. Liakos, I., Rizzello, L., Hajiali, H., Brunetti, V., Carzino, R., Pompa, P.P., Mele, E., 2015. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. Journal of Materials Chemistry B, 3(8), 1583-1589. CR - 23. Shan, Y.H., Peng, L.H., Liu, X., Chen, X., Xiong, J., Gao, J.Q., 2015. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. International Journal of Pharmaceutics, 479(2), 291-301. CR - 24. Banerjee, J., Biswas, S., Madhu, N.R., Karmakar, S.R., Biswas, S.J., 2014. A better understanding of pharmacological activities and uses of phytochemicals of Lycopodium clavatum: A review. Journal of Pharmacognosy and Phytochemistry, 3(1), 207-210. CR - 25. Orhan, I., Özçelik, B., Aslan, S., Kartal, M., Karaoglu, T., Şener, B., Choudhary, M.I., 2007. Antioxidant and antimicrobial actions of the clubmoss Lycopodium clavatum L.. Phytochemistry Reviews, 6, 189-196. CR - 26. Dymek, A., Widelski, J., Wojtanowski, K.K., Płoszaj, P., Zhuravchak, R., Mroczek, T., 2021. Optimization of pressurized liquid extraction of Lycopodiaceae alkaloids obtained from two Lycopodium species. Molecules, 26(6), 1626. CR - 27. Roby, M.H.H., Sarhan, M.A., Selim, K.A.H., Khalel, K.I., 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827-831. CR - 28. Wang, C., Chien, H.S., Hsu, C.H., Wang, Y.C., Wang, C.T., Lu, H.A., 2007. Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules, 40(22), 7973-7983. CR - 29. Nasouri, K., Shoushtari, A.M., Kaflou, A., 2012. Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number. Micro & Nano Letters, 7(5), 423-426. CR - 30. Wu, M., Wang, Q., Li, K., Wu, Y., Liu, H., 2012. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polymer Degradation and Stability, 97(8), 1511-1519. CR - 31. Zhang, C., Yang, Q., Zhan, N., Sun, L., Wang, H., Song, Y., Li, Y., 2010. Silver nanoparticles grown on the surface of PAN nanofiber: Preparation, characterization and catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 362(1-3), 58-64. CR - 32. Higashi, S., Hirai, T., Matsubara, M., Yoshida, H., Beniya, A., 2020. Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF. Scientific Reports, 10(1), 13427. CR - 33. Stepanyan, R., Subbotin, A.V., Cuperus, L., Boonen, P., Dorschu, M., Oosterlinck, F., Bulters, M.J.H., 2016. Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer, 97, 428-439. CR - 34. Gu, S.Y., Ren, J., Vancso, G.J., 2005. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. European Polymer Journal, 41(11), 2559-2568. CR - 35. Ben-Sasson, M., Lu, X., Bar-Zeev, E., Zodrow, K.R., Nejati, S., Qi, G., Elimelech, M., 2014. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Research, 62, 260-270. CR - 36. Perreault, F., Jaramillo, H., Xie, M., Ude, M., Nghiem, L.D., Elimelech, M., 2016. Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environmental Science & Technology, 50(11), 5840-5848. UR - https://doi.org/10.21605/cukurovaumfd.1606113 L1 - https://dergipark.org.tr/tr/download/article-file/4461688 ER -