TY - JOUR T1 - Çok yönlü dövme ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının darbe davranışına olan etkisinin incelenmesi TT - Investigation of the effect of multi-directional forging and aging processes on the impact behavior of Cu-Co-Be-Ni alloy AU - Yanar, Harun PY - 2025 DA - April Y2 - 2025 DO - 10.28948/ngumuh.1608101 JF - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JO - NÖHÜ Müh. Bilim. Derg. PB - Niğde Ömer Halisdemir Üniversitesi WT - DergiPark SN - 2564-6605 SP - 542 EP - 550 VL - 14 IS - 2 LA - tr AB - Bu çalışma kapsamında Cu-Co-Be-Ni alaşımına çözündürme, çok yönlü dövme (ÇYD) ve yaşlandırma işlemlerinin farklı kombinasyonlarını içeren işlem adımları uygulanmıştır. Uygulanan işlem adımları sonrası elde edilen farklı örneklerin mikroyapısal değişimi, mekanik özellikleri ve kırılma enerjisi (darbe sönüm kapasitesi) üzerindeki etkileri sistematik bir şekilde araştırılmıştır. Farklı prosesler kapsamında uygulanan işlem adımlarının alaşımın gerek mekanik gerekse mikroyapısal özellikleri üzerinde oldukça etkili olduğu görüldü. En iyi sertlik ve mukavemet değerleri sırasıyla uygulanan çözündürme, ÇYD ve yaşlandırma işlemleri sonrasında elde edilirken, kırılma tokluğunun ise bu yapıda daha düşük olduğu saptandı. Özetle, ÇYD etkisiyle yapıda oluşturulan tane incelmesi ve dislokasyon artışı ve yaşlandırma sonrası çökelti oluşumuna bağlı olarak alaşımın mekanik özellikleri iyileştirilirken, süneklik ve darbe sönüm kapasiteleri düşürdüğü gözlendi. KW - Aşırı plastik deformasyon KW - Darbe sönüm kapasitesi KW - Cu-Co-Be-Ni alaşımı N2 - In this study, different combinations of mechanical and thermal processes, such as solution treatment, multi-directional forging (MDF), and aging treatment, were applied to the Cu-Co-Be-Ni alloy. The effects of the applied processes on microstructure, mechanical properties, and fracture toughness of samples were systematically investigated. The obtained results demonstrated that the process steps applied separately or in combination were quite effective on both the mechanical and microstructural properties of the alloy. The highest hardness and strength values were obtained after the combination of solutioned, MDF and aging processes, respectively, while the fracture toughness was found to be lowest in this structure. In summary, it was observed that while the mechanical properties of the alloy were improved due to grain refinement and increasing dislocation density in the structure due to the effect of MDF and precipitation formation after aging, the ductility and impact damping capacities decreased. CR - P. Scardi, M. Leoni, G. Straffelini and G.D. Giudici, Microstructure of Cu–Be alloy triboxidative wear debris. Acta Materialia, 55, 2531–2538, 2007. https://doi.org/10.1016/j.actamat.2006.11.046 CR - M.P. Ahmed and H.S. Jailani, Enhancing wear resistance of cryo treated Cu-Be2 alloy. Silicon, 11, 105–115, 2019. https://doi.org/10.1007/s12633-018-9835-y CR - Properties and Selection: Non-ferrous alloys pure metals, ASM Metals Handbook. 2-10, 403–423, 1992. CR - D.M. Zhao, Q.M. Dong, P. Liu, Z.H. Jin and B.X. Kang, Mechanism of alloying of copper alloy with high strength and high electrical conductivity. Chinese Journal of nonferrous metals, 11(2), 24-27, 2002. CR - T. Hasegawa, Y. Takagawa, C. Watanabe and R. Monzen, Deformation of Cu-Be-Co Alloys by Aging at 593 K. Materials Transactions, 52, 1685-1688, 2011. https://doi.org/10.2320/matertrans.M2011057 CR - Y. Tang, Y. Kang, L. Yue and X. Jiao, Mechanical properties optimization of a Cu–Be–Co–Ni alloy by precipitation design. Journal of Alloys and Compounds, 695, 613-625, 2017. https://doi.org/10.1016/j.jallcom.2016.11.014 CR - Y. Tang, Y. Kang, L. Yue and X. Jiao, The effect of aging process on the microstructure and mechanical properties of a Cu–Be–Co–Ni alloy. Materials and Design, 85, 332-341, 2015. https://doi.org/10.1016/j.matdes.2015.06.157 CR - A. Kızılaslan and I. Altınsoy, The mechanism of two-step increase in hardness of precipitation hardened CuCoNiBe alloys and characterization of precipitates. Journal of Alloys and Compounds, 701,116-121, 2017. https://doi.org/10.1016/j.jallcom.2017.01.101 CR - M. Demirtas, Microstructural, mechanical and tribological characterization of Cu-Co-Ni-Be alloy processed via equal channel angular pressing. Materials Today Communications, 28, 10267, 2021. https://doi.org/10.1016/j.mtcomm.2021.102676 CR - F. Berto, P. Lazzarin and P. Gallo, High-temperature fatigue strength of a copper–cobalt–beryllium alloy. The Journal of Strain Analysis for Engineering Design, 49 (4), 244-256, 2014. https://doi.org/10.1177/0309324713511804 CR - D. Özyürek, M. Yıldırım and T. Tuncay, An Investigation of the Effects of Ageing Parameters on Wear Behaviours and Electrical Conductivity of Cu-Co-Be Alloys. Acta Physica Polonica A, 129(4), 559-561, 2016. https://doi.org/10.12693/APhysPolA.129.559 CR - J. Chen, M. Zhang, D. Yang and H. Liang, Comparative study on the Properties of CuCoBe Alloy and CuNiCoBe Alloy. Advanced Materials Research, 988, 145-150, 2014. https://doi.org/10.4028/www.scientific.net/AMR.988.145 CR - L. Hefa, S. Naizhen, D. Xueli, R. He and L. Lijun, Form and Effect of Zr in Cu-Co-Be-Zr Alloy. Acta Metallurgica Sinica, 28 (11), 10-14, 1992. https://amse.org.cn/CN/Y1993/V6/I3/153 CR - D.A. Avila-Salgado, A. Juárez-Hernández, J. Cabral-Miramontes, and J.L. Camacho-Martínez, Strengthening properties and wear resistance of the Cu-xNi-yCo-Cr-Si alloy by varying Ni/Co and Zr addition. Lubricants, 9 (10), 96, 2021. https://doi.org/10.3390/lubricants9100096 CR - Z. Yanjun, S. Kexing, M. Xujun, L. Yong, Y. Shaodan and L. Zhou, Phase transformation kinetics of Cu-Be-Co-Zr alloy during aging treatment. Rare metal materials and engineering, 47 (4), 1096-1099, 2018. https://doi.org/10.1016/S1875-5372(18)30126-7 CR - Y.J. Zhou, K.X. Song, J.D. Xing, Z. Li and X.H. Guo, Mechanical properties and fracture behavior of Cu-Co-Be alloy after plastic deformation and heat treatment. Journal of Iron and Steel Research International, 23 (9), 933-939, 2016. https://doi.org/10.1016/S1006-706X(16)30141-8 CR - H. Yang, Z. Ma, C. Lei, L. Meng, Y. Fang, J. Liu and H. Wang, High strength and high conductivity Cu alloys: A review. Science China Technological Sciences, 63 (12), 2505-2517, 2020. https://doi.org/10.1007/s11431-020-1633-8 CR - J. Wongsa-Ngam, M. Kawasaki and T.G. Langdon, A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. Journal of Materials Science, 48, 4653-4660, 2013. https://doi.org/10.1007/s10853-012-7072-0 CR - A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa and V.I. Kopylov, Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta materialia, 50 (7), 1639-1651, 2002. https://doi.org/10.1016/S1359-6454(01)00437-2 CR - R. Zhang, Z. Li, X. Sheng, Y. Gao and Q. Lei, Grain refinement and mechanical properties improvements in a high strength Cu–Ni–Si alloy during multidirectional forging. Fusion Engineering and Design, 159, 111766, 2020. https://doi.org/10.1016/j.fusengdes.2020.111766 CR - R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Progress in materials science, 45 (2):103-189, 2000. https://doi.org/10.1016/S0079-6425(99)00007-9 CR - G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina and S.V. Dobatkin, Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging. Materials Science and Engineering A, 649, 114-122, 2016. https://doi.org/10.1016/j.msea.2015.09.111 CR - G. Purcek, H. Yanar, D.V. Shangina, M. Demirtas, N.R. Bochvar and S.V. Dobatkin, Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 742, 325-333, 2018. https://doi.org/10.1016/j.jallcom.2018.01.303 CR - P.C. Sharath, Multi directional forging: an advanced deforming technique for severe plastic deformation. Advanced Welding and Deforming, 17, 529-556, 2021. http://dx.doi.org/10.1016/B978-0-12-822049-8.00017-7 CR - I. Shakhova, Z. Yanushkevich, I. Fedorova, A. Belyakov and R. Kaibyshev, Grain refinement in a Cu–Cr–Zr alloy during multidirectional forging. Materials Science and Engineering A, 606, 380-389, 2014. https://doi.org/10.1016/j.msea.2014.03.116 CR - G. Kapoor, T. Kvackaj, A. Heczel, J. Bidulská, R. Kočiško, Z. Fogarassy and J. Gubicza, The influence of severe plastic deformation and subsequent annealing on the microstructure and hardness of a Cu–Cr–Zr alloy. Materials, 13 (10), 2241, 2020. https://doi.org/10.3390/ma13102241 CR - D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo, The role of annealing twins during recrystallization of Cu. Acta materialia, 55 (12), 4233-41, 2007. https://doi.org/10.1016/j.actamat.2007.03.021 CR - Y.J. Zhou, K.X. Song, J.D. Xing and Y.M. Zhang, Precipitation behavior and properties of aged Cu-0.23 Be-0.84 Co alloy. Journal of Alloys and Compounds, 658, 920-930, 2016. https://doi.org/10.1016/j.jallcom.2015.10.290 CR - G. Purcek, H. Yanar, M. Demirtas, D.V. Shangina, N.R. Bochvar and S.V. Dobatkin, Microstructural, mechanical and tribological properties of ultrafine-grained Cu–Cr–Zr alloy processed by high pressure torsion. Journal of Alloys and Compounds, 816, 152675, 2020. https://doi.org/10.1016/j.jallcom.2019.152675 CR - F. Shahriyari, M.H. Shaeri, A. Dashti, Z. Zarei, M.T. Noghani, J.H. Cho and F. Djavanroodi, Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging. Materials Science and Engineering A, 831, 142149, 2022. https://doi.org/10.1016/j.msea.2021.142149 CR - P.C.A. Flausino, M.E.L. Nassif, F. Castro-Bubani, P.H.R. Pereira, M.T.P. Aguilar and P.R. Cetlin, Microstructural evolution and mechanical behavior of copper processed by low strain amplitude multi-directional forging. Materials Science and Engineering: A, 756, 474-483, 2019. https://doi.org/10.1016/j.msea.2019.04.075 CR - S.H. Hoseini, S. Khalilpourazary and M. Zadshakoyan, Fracture Behavior of Annealed and Equal Channel Angular Pressed Copper: An Experimental Study. Journal of Materials Engineering and Performance, 29, 975-986, 2020. https://doi.org/10.1007/s11665-020-04598-z UR - https://doi.org/10.28948/ngumuh.1608101 L1 - https://dergipark.org.tr/tr/download/article-file/4470549 ER -