TY - JOUR T1 - The PIDA Controller Analysis Simulator TT - PIDA Denetleyici Analiz Simülatörü AU - Vatansever, Fahri AU - Hatun, Metin PY - 2025 DA - June Y2 - 2025 DO - 10.29109/gujsc.1608341 JF - Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji JO - GUJS Part C PB - Gazi Üniversitesi WT - DergiPark SN - 2147-9526 SP - 526 EP - 537 VL - 13 IS - 2 LA - en AB - The Proportional-Integral-Derivative (PID) is a traditional controller type widely used in industrial control systems. However, sometimes they may be insufficient in controlling higher degree systems. In these cases, the Proportional-Integral-Derivative-Acceleration (PIDA) controllers can be preferred. In this study; a software tool with a user-friendly interface has been designed that performs control systems simulations with different type PIDA controllers in an accurate, effective, fast and simple manner, produced single or comparative numerical and graphical results (performance parameters, time and frequency domain responses, etc.). The developed simulator with ease and contents is suitable for all students, engineers, and users from this area. KW - Control systems KW - PIDA controller KW - simulator N2 - Oransal-İntegral-Türev (PID), endüstriyel kontrol sistemlerinde yaygın olarak kullanılan geleneksel bir denetleyici türüdür. Ancak, bazen daha yüksek dereceli sistemleri kontrol etmede yetersiz kalabilmektedirler. Bu durumlarda Oransal-İntegral-Türev-İvme (PIDA) denetleyiciler tercih edilebilirler. Bu çalışmada; farklı tip PIDA denetleyicilerle kontrol sistemleri simülasyonlarını doğru, etkili, hızlı ve basit bir şekilde gerçekleştiren, tek veya karşılaştırmalı sayısal ve grafiksel sonuçlar (performans parametreleri, zaman ve frekans domeni cevapları vb.) üreten, kullanıcı dostu bir arayüze sahip bir yazılım aracı tasarlanmıştır. Geliştirilen simülatör, kullanım kolaylığı ve içeriğiyle bu alandaki tüm öğrenciler, mühendisler ve kullanıcılar için uygundur. CR - [1] O'dwyer, A., (2009). Handbook of PI and PID controller tuning rules (third edition). London: Imperial College Press. CR - [2] Åström K.J. and Hägglund T. (2006). Advanced PID Control. ISA-The Instrumentation, Systems and Automation Society. CR - [3] Jung S. and Dorf R.C., Novel analytic technique for PID and PIDA controller design, IFAC Proceedings Volumes, 29 No. 1 (1996) 1146-1151. doi: 10.1016/S1474-6670(17)57819-2 CR - [4] Jung S. and Dorf R.C., Analytic PIDA controller design technique for a third order system, Proceedings of 35th IEEE Conference on Decision and Control, (1996), 2513-2518. doi: 10.1109/CDC.1996.573472 CR - [5] Patu P., Jongkol L, Kitti T., Noriyuki K., Shunji M., PIDA controller design by CDM, Proceedings of the 13th KACC, (1998) 395-400. CR - [6] Dal-Young H., Ihn-Yong L., Young-Seung C., Young-Do L., Boo-Kwi C., The design of PIDA controller with pre-compensator, 2001 IEEE International Symposium on Industrial Electronics Proceedings (ISIE 2001), (2001) 798-804. doi: 10.1109/ISIE.2001.931570 CR - [7] Ukakimaparn P., Pannil P., Boonchuay P., Trisuwannawat T., PIDA controller designed by Kitti's method, 2009 ICROS-SICE International Joint Conference, (2009) 1547-1550. CR - [8] Sambariya D.K., Paliwal D., Comparative design and analysis of PIDA controller using Kitti’s and Jung-Dorf approach for third order practical systems, Journal of Advances in Mathematics and Computer Science, 16 No. 5 (2016) 1-16. doi: 10.9734/BJMCS/2016/26223 CR - [9] Bhandari M. and Rathore A., Comparative study of design of PIDA controller for induction motor, 2016 10th International Conference on Intelligent Systems and Control (ISCO), (2016) 1-5. doi: 10.1109/ISCO.2016.7726968 CR - [10] Kumar M., Hote Y.V., Robust CDA-PIDA control scheme for load frequency control of interconnected power systems, IFAC-PapersOnLine, 51 No. 4 (2018) 616-621. doi: 10.1016/j.ifacol.2018.06.164 CR - [11] Jitwang T., Nawikavatan A., Puangdownreong D., Optimal PIDA controller design for three-tank liquid-level control system with model uncertainty by cuckoo search, International Journal of Circuits, Systems and Signal Processing, 13 (2019) 60-65. CR - [12] Kumar M. and Hote, Y.V., Graphic RCRA‐PIDA tuning based on maximum sensitivity for automatic generation control of thermal and hydro power systems, IET Generation, Transmission & Distribution, 14 No. 26 (2020) 6427-6439. doi: 10.1049/iet-gtd.2020.0618 CR - [13] Kumar M. and Hote, Y.V., Maximum sensitivity-constrained coefficient diagram method-based PIDA controller design: application for load frequency control of an isolated microgrid, Electrical Engineering, 103 No. 5 (2021) 2415-2429. doi: 10.1007/s00202-021-01226-4 CR - [14] Kumar M., Hote Y.V., Sikander A., A novel cascaded CDM-IMC based PIDA controller design and its application, 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), (2023) 1-7. doi: 10.1109/GlobConHT56829.2023.10087714 CR - [15] Sahib M.A., A novel optimal PID plus second order derivative controller for AVR system, Engineering Science and Technology, An International Journal, 18 No. 2 (2015) 194-206. doi: 10.1016/j.jestch.2014.11.006 CR - [16] Hlangnamthip S. and Puangdownreong D., Optimal PIDA controller design for Maglev vehicle suspension system by Lévy-Flight Firefly algorithm, SWU Engineering Journal, 14 No. 1 (2019) 12-22. CR - [17] Romsai W. and Nawikavatan A., Optimal PIDA controller design for quarter car suspension system by intensified current search, 2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE), (2019) 1-5. doi: 10.1109/ICTKE47035.2019.8966863 CR - [18] Kumar M. and Hote Y.V., A novel PIDA controller design for a single-axis gimbal system, 2020 IEEE 17th India Council International Conference (INDICON), (2020) 1-6. doi: 10.1109/INDICON49873.2020.9342153 CR - [19] Huba M., Bistak P., Vrancic D., Optimizing constrained series PIDA controller for speed loops inspired by Ziegler-Nichols, 2023 International Conference on Electrical Drives and Power Electronics (EDPE), (2023) 1-6. doi: 10.1109/EDPE58625.2023.10274033 CR - [20] Huba M., Bistak P., Vrancic D., Parametrization and optimal tuning of constrained series PIDA controller for IPDT models, Mathematics, 11 No. 20 (2023) 4229. doi: 10.3390/math11204229 CR - [21] Huba M., Bistak P., Vrancic D., Series PIDA controller design for IPDT processes, Applied Sciences, 13 No. 4 (2023) 2040. doi: 10.3390/app13042040 CR - [22] Huba M., Bistak P., Brieznik J., Vrancic D., Constrained series PI, PID and PIDA controller design inspired by Ziegler-Nichols, Power Electronics and Drives, 9 No. 1 (2024) 331-346. doi: 10.2478/pead-2024-0021 CR - [23] Huba M., Filtered PIDA controller for the double integrator plus dead time, IFAC-PapersOnLine, 52 No. 27 (2019) 106-113. doi: 10.1016/j.ifacol.2019.12.741 CR - [24] Huba M. and Vrančič D., Comparing filtered PI, PID and PIDD2 control for the FOTD plants, IFAC-PapersOnLine, 51 No. 4 (2018) 954-959. doi: 10.1016/j.ifacol.2018.06.099 CR - [25] Heo J.P., Lim S., Im C.G., Ryu K.H., Sung S.W., New non-interactive form of the proportional-integral-derivative-acceleration (PIDA) controller and its explicit tuning rule, Korean Journal of Chemical Engineering, 40 (2023) 1277-1283. doi: 10.1007/s11814-022-1356-0 CR - [26] Hu X., Hou G., Tan W., Tuning of PIDD2 controllers for oscillatory systems with time delays, Frontiers in Control Engineering, 3 (2023) 1-17. doi: 10.3389/fcteg.2022.1083419 CR - [27] Hu X., Tan W., Hou G., Tuning of PID/PIDD2 controllers for second-order oscillatory systems with time delays, Electronics, 12 No. 14 (2023) 3168. doi: 10.3390/electronics12143168 CR - [28] Li Z., Zhang H., Tan W., Comparison of PI/PID/PIDD2 controllers for higher order processes, IFAC-PapersOnLine, 58 No. 7 (2024) 340-345. doi: 10.1016/j.ifacol.2024.08.085 CR - [29] Hu X., Tan W., Hou G., PIDD2 control of large wind turbines pitch angle, Energies, 16 No. 13 (2023) 1-22. doi: 10.3390/en16135096 CR - [30] Kumar M. and Hote Y.V., Robust IMC-PIDA controller design for load frequency control of a time delayed power system, 2019 IEEE 58th Conference on Decision and Control (CDC), (2019) 8380-8385. doi: 10.1109/CDC40024.2019.9029259 CR - [31] Kumar M. and Hote Y.V., Robust PIDD2 controller design for perturbed load frequency control of an interconnected time-delayed power systems, IEEE Transactions on Control Systems Technology, 29 No. 6 (2021) 2662-2669. doi: 10.1109/TCST.2020.3043447 CR - [32] Anwar M.N., Siddiqui M.A., Laskar S.H., Yadav A., PIDA controller design for higher order stable process with inverse response characteristic, 2018 International Conference on Computational and Characterization Techniques in Engineering & Sciences (CCTES), (2018) 236-240. doi: 10.1109/CCTES.2018.8674158 CR - [33] Huba M. and Vrancic D., Extending the model-based controller design to higher-order plant models and measurement noise, Symmetry, 13 No. 5 (2021) 1-44. doi: 10.3390/sym13050798 CR - [34] Arulvadivu J., Manoharan S., Lal Raja Singh R., Giriprasad S., Optimal design of proportional integral derivative acceleration controller for higher‐order nonlinear time delay system using m‐MBOA technique, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35 No. 6 (2022) 1-24. doi: 10.1002/jnm.3016 CR - [35] Visioli A. and Sánchez-Moreno J., IMC-based tuning of PIDA controllers: a comparison with PID control, IFAC-PapersOnLine, 58 No. 7 (2024) 1-6. doi: 10.1016/j.ifacol.2024.08.001 CR - [36] Visioli A. and Sánchez-Moreno J., A relay-feedback automatic tuning methodology of PIDA controllers for high-order processes, International Journal of Control, 97 No. 1 (2024) 51-58. doi: 10.1080/00207179.2022.2135019 CR - [37] Visioli A. and Sanchez-Moreno J., Design of PIDA controllers for high-order integral processes, 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), (2023) 1-8. doi: 10.1109/ETFA54631.2023.10275379 CR - [38] Kumar M. and Hote Y.V., PIDD2 Controller design based on internal model control approach for a non-ideal DC-DC boost converter, 2021 IEEE Texas Power and Energy Conference (TPEC), (2021) 1-6. doi: 10.1109/TPEC51183.2021.9384954 CR - [39] Kumar M. and Hote Y.V. Real-time performance analysis of PIDD2 controller for nonlinear twin rotor TITO aerodynamical system, Journal of Intelligent & Robotic Systems, 101 No. 55 (2021) 1-16. doi: 10.1007/s10846-021-01322-4 CR - [40] Kumar M., Mahadeva R., Patole S.P., Non-fragile PIDA controller design for time-delayed uncertain system, IEEE Access, 12 (2024) 81156-81169. doi: 10.1109/ACCESS.2024.3411146 CR - [41] Zandavi S.M., Chung V., Anaissi A., Accelerated control using stochastic dual simplex algorithm and genetic filter for drone application, IEEE Transactions on Aerospace and Electronic Systems, 58 No. 3 (2022) 2180-2191. doi: 10.1109/TAES.2021.3134751 CR - [42] Saikia L.C. and Sinha, N., Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller, International Journal of Electrical Power & Energy Systems, 80 (2016) 52-63. doi: 10.1016/j.ijepes.2016.01.037 CR - [43] Kumar M., Altaf A., Biswas, D., Cheetah optimizer based PIDA controller design for cyber-physical power system under cyberattacks and uncertainty, 2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC), (2023) 1-5. doi: 10.1109/STPEC59253.2023.10431040 CR - [44] Kumar M., Resilient PIDA control design based frequency regulation of interconnected time-delayed microgrid under cyber-attacks, IEEE Transactions on Industry Applications, 59 No. 1 (2023) 492-502. doi: 10.1109/TIA.2022.3205280 CR - [45] Huba M., Vrancic D., Bistak P., PID control with higher order derivative degrees for IPDT plant models, IEEE Access, 9 (2021) 2478-2495. doi: 10.1109/ACCESS.2020.3047351 CR - [46] Bistak P., Huba M., Vrancic D., Chamraz S., IPDT Model-Based Ziegler–Nichols Tuning Generalized to Controllers with Higher-Order Derivatives, Sensors, 23 No. 8 (2023) 3787. doi: 10.3390/s23083787 CR - [47] Huba M., Vrancic D., Bistak P., Series PID control with higher-order derivatives for processes approximated by IPDT models, IEEE Transactions on Automation Science and Engineering, 21 No. 3 (2024) 4406-4418. doi: 10.1109/TASE.2023.3296201 CR - [48] Huba M., Bistak P., Brieznik J., Vrancic D., Constrained series PI, PID and PIDA controller design Inspired by Ziegler-Nichols, Power Electronics and Drives, 9 No. 1 (2024) 331-346. doi: 10.2478/pead-2024-0021 CR - [49] Vrančić D. and Huba M., High-order filtered PID controller tuning based on magnitude optimum, Mathematics, 9 No. 12 (2021) 1-24. soi: 10.3390/math9121340 CR - [50] Bisták P., Disturbance analysis virtual laboratory for PID controllers with higher derivative degrees, 2018 16th International Conference on Emerging eLearning Technologies and Applications (ICETA), (2018) 69-74. doi: 10.1109/ICETA.2018.8572065 CR - [51] Bisták P. and Huba M., Analysis of higher derivative degree PID controllers via virtual laboratory, 2019 27th Mediterranean Conference on Control and Automation (MED), (2019) 356-361. doi: 10.1109/MED.2019.8798527 CR - [52] Bisták P. and Huba M., Interactive software tool for design of higher derivative degree PID controllers, IFAC-PapersOnLine, 53 No. 20 (2020) 17198-17203. doi: 10.1016/j.ifacol.2020.12.1736 CR - [53] Ferrari M. and Visioli A., A software tool to understand the design of PIDA controllers, IFAC-PapersOnLine, 55 No. 17 (2022) 249-254. doi: 10.1016/j.ifacol.2022.09.287 CR - [54] Žáková K., Matišák J., Šefčík J., Contribution to PID and PIDA interactive educational tools, IFAC-PapersOnLine, 58 No. 7 (2024) 115-119. doi: 10.1016/j.ifacol.2024.08.020 CR - [55] Numsomran A., Sriratana W., Julsereewong P., Kongratana V., Tirasesth K., I-PDA controller designed by CDM, Proceedings of the 14th KACC, (1999) 284-287. CR - [56] The MathWorks Inc. (2022). MATLAB, App Designer. CR - [57] Bingül Z. and Karahan O., A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system, Journal of the Franklin Institute, 355 No. 13 (2018) 5534-5559. doi: 10.1016/j.jfranklin.2018.05.056 CR - [58] İzci D., Ekinci S., Mirjalili S., Optimal PID plus second-order derivative controller design for AVR system using a modified Runge Kutta optimizer and Bode’s ideal reference model, International Journal of Dynamics and Control, 11 No. 3 (2023) 1247-1264. doi: 10.1007/s40435-022-01046-9 UR - https://doi.org/10.29109/gujsc.1608341 L1 - https://dergipark.org.tr/tr/download/article-file/4471613 ER -