TY - JOUR T1 - Comparison Materials of Bumper Beams for Passenger Cars Using Crash Analyses TT - Yolcu Araçları için Tampon Kirişlerinin Çarpışma Analizleri ile Malzeme Karşılaştırması AU - Barut, Ebru AU - Akdoğan Eker, Ayşegül AU - Özden, Ersel AU - Metin, Harun PY - 2025 DA - June Y2 - 2025 JF - Van Yüzüncü Yıl Üniversitesi Mühendislik Fakültesi Dergisi JO - VYYUJEF PB - Van Yüzüncü Yıl Üniversitesi WT - DergiPark SN - 3023-5286 SP - 11 EP - 21 VL - 3 IS - 1 LA - en AB - Frontal accidents, which account for most of the accident types to which passenger vehicles are subjected, emphasize the bumper component. The vehicle's radiator, cooling system, engine, and other components are all protected by the bumper part, thus it needs to be a part that can give safety and great energy absorption to stop any impacts. The material and design of the item are the two most crucial factors that must be improved to offer safety and maximum energy absorption. The goal of using less energy is to employ appropriate design and materials and provide transportation and consumption sites.Within the framework of this study, material optimization employing various materials and collision simulation analyses were done to maximize the collision endurance of the cars. The mesh structure was obtained using the Hypermesh tool, and the part design was produced using Catia V5. The simulation outputs were examined using Oasys-Suite, while the simulations themselves were examined using Ansys Ls-Dyna. Force-moment-time graphs, deformation, and stress data of the materials were obtained. According to the obtained results, the material expressed as MAT1 gave better results compared to the material expressed as MAT2 in terms of the material's resistance to deformation and its capacity to absorb impact energy. KW - Bumper KW - Crashworthiness KW - Safety KW - Steel Materials N2 - Yolcu araçlarının maruz kaldığı kazaların büyük bir kısmını oluşturan önden çarpışmalar, tampon bileşeninin önemini vurgulamaktadır. Tampon, aracın radyatörü, soğutma sistemi, motoru ve diğer bileşenlerini korumaktadır. Bu nedenle, tamponun çarpışma etkilerini durdurabilecek güvenlik sağlayan ve yüksek enerji emilim kapasitesine sahip bir bileşen olması gerekmektedir. Bu bağlamda, güvenlik ve maksimum enerji emilimi sağlamak için en kritik iki faktör, bileşenin malzeme seçimi ve tasarımıdır. Enerji tüketimini azaltma hedefi doğrultusunda uygun tasarım ve malzemelerin kullanımı, taşıma ve tüketim noktalarına katkı sağlamaktadır.Bu çalışma kapsamında, araçların çarpışma dayanımını en üst düzeye çıkarmak amacıyla çeşitli malzemeler kullanılarak malzeme optimizasyonu yapılmış ve çarpışma simülasyon analizleri gerçekleştirilmiştir. Parça tasarımı Catia V5 yazılımı kullanılarak oluşturulmuş, ağ yapısı Hypermesh aracı ile elde edilmiştir. Simülasyon sonuçları Oasys-Suite yazılımı ile analiz edilmiş, simülasyonların kendisi ise Ansys Ls-Dyna kullanılarak incelenmiştir. Bu süreçte malzemelere ait kuvvet-moment-zaman grafikleri, deformasyon ve gerilme verileri elde edilmiştir. Elde edilen sonuçlara göre, MAT1 olarak ifade edilen malzeme, MAT2 olarak ifade edilen malzemeye kıyasla deformasyona direnç ve darbe enerjisini emme kapasitesi açısından daha iyi performans göstermiştir. CR - [1] N. Natarajan, P. Joshi, R. Tyagi, (2020). Design improvements of vehicle bumper for low speed impact, Materials Today: Proceedings, 38(4). CR - [2] N. Tanlak, F. Sönmez, M. Şenaltun, (2015). Shape optimization of bumper beams under high-velocity impact loads, Engineering Structures, 95, 49–60. CR - [3] F. Sayyad, A. Deshmukh, (2013). Crash analyses of bumper assembly with solver to improvise the design for impact tests, International Journal of Engineering Research & Technology, 2, 1282–1289. CR - [4] O. Lademo, T. Berstad, M. Eriksson, T. Tryland, T. Furu, O. Hopperstad, M. Langseth, (2008). A model for process-based crash simulation, International Journal of Impact Engineering, 35, 376–388. CR - [5] A. Chaure, G. Mathur, N. Babu, (2021). Crash test analyses of bumpers of automobiles using LS-DYNA, Materials Science and Engineering, 1123, 012007. CR - [6] N. Khedkar, C. Sonawane, S. Kumar, (2020). Experimental and static numerical analysis on bumper beam to be proposed for Indian passenger car, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.09.582 CR - [7] N. Nachippan, M. Alphonse, V. Raja, K. Palanikumar, R. Kiran, (2021). Numerical analysis of natural fiber reinforced composite bumper, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2021.02.045 CR - [8] M. Basith, N. Reddy, S. Uppalapati, S. Jani, (2021). Crash analysis of passenger car bumper assembly to improve design for impact test, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.08.561 CR - [9] V. Kannan, J. Surendar, S. Sundaram, S. Jegadeeswer, R. Venkatesh, (2020). Crash analysis on automobile bumpers, Materials Science and Engineering, 923, 012018. CR - [10] C. Kumar, J. Abhilash, M. Anjaiah, A. Mohan, (2014). FE analysis on vehicle bumper using different materials and speeds, International Journal of Engineering Research and Applications, 4, 99–110. CR - [11] A. John, M.B. Nidhi, (2014). Modelling and analysis of an automotive bumper used for a low passenger vehicle, International Journal of Engineering Trends and Technology (IJETT), 15(7). CR - [12] J. Marzbanrad, M. Alijanpour, M.S. Kiasat, (2009). Design and analysis of an automotive bumper beam in low-speed frontal crashes, Thin-Walled Structures, 47(8–9), 902–911. CR - [13] R.S. Reddy, C.R. Reddy, (2019). Design and analysis of an automotive bumper, International Journal of Scientific Research in Science and Technology, 7(1), https://doi.org/10.32628/IJSRST CR - [14] D. Jan, M.S. Khan, I.U. Din, K.A. Khan, S.A. Shah, A. Jan, (2024). A review of design, materials, and manufacturing techniques in bumper beam system, Composites Part C: Open Access, 14, 100496. CR - [15] E. Kurtuluş, G. Tekin, (2021). Conversion of aluminum front bumper system to magnesium material by using design of experiment method, International Journal of Automotive Science and Technology, 5(1), 34–42. CR - [16] H. Liu, Y. Zhang, Z. Wang, (2013). Effect of yield strength on the deformation behavior of metals, Journal of Materials Science and Engineering, 27(5), 134–141. CR - [17] L. Zhang, (2020). Effect of material strength on deformation mechanisms in automotive components, Journal of Materials Engineering and Performance, 29(10), 6254–6262. CR - [18] J. Wang, X. Zhang, Y. Liu, (2016). High yield strength and work hardening in aluminum alloys, Materials Science Forum, 809, 112–118. UR - https://dergipark.org.tr/tr/pub/vyyumfd/issue//1610903 L1 - https://dergipark.org.tr/tr/download/article-file/4482593 ER -