TY - JOUR T1 - DERİN KRİYOJENİK İŞLEM UYGULANMIŞ ORTA KARBONLU ALAŞIMLI ÇELİKLERİN MİKROYAPI VE MEKANİK ÖZELLİKLERİ TT - MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DEEP CRYOGENICALLY TREATED MEDIUM CARBON ALLOY STEELS AU - Kılıçay, Koray AU - Kaya, Esad AU - Bayar, İsmail PY - 2025 DA - April Y2 - 2025 DO - 10.31796/ogummf.1611872 JF - Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi JO - ESOGÜ Müh Mim Fak Derg PB - Eskişehir Osmangazi Üniversitesi WT - DergiPark SN - 2630-5712 SP - 1656 EP - 1661 VL - 33 IS - 1 LA - tr AB - Derin kriyojenik işlem, kademeli olarak sıfırın altındaki sıcaklıklara soğutulması, bekletilmesi ve ısıtılması işlemlerini içeren özel bir ısıl işlem sürecidir. Bu çalışmada, ticari orta karbonlu AISI 4140 çeliğinin mikroyapısal ve mekanik davranışları üzerinde kriyojenik işlemin etkileri araştırılmıştır. Çekme testine uygun hazırlanan numuneler 910°C’ de ostenitlenmiş ardından yağda su verme (S), yağda su verme-temperleme (ST) işlemleri uygulanmıştır. -196°C'de uygulanan kriyojenik ısıl işlem prosesi, çeliğin geleneksel ısıl işlem prosedürüne eklenmiştir. Derin kriyojenik işleme tabi tutulmuş numuneler (SKT) daha sonra 200°C'de 1 saat temperlenmiştir. Derin kriyojenik işlemin numuneler üzerindeki etkileri çekme testi, sertlik ve mikroyapı açısından değerlendirilmiştir. Sonuçlarda, derin kriyojenik işlem karbürlerin çökelmesi ve sertliğin artması nedeniyle statik tokluk açısından geleneksel ısıl işlem görmüş numunelere kıyasla benzer davranış göstermesini sağlamıştır. Derin kriyojenik işlem uygulamasının temperlenmiş numuneye göre sertliği hafifçe iyileştirdiğini (%10) görülmüştür. Bununla birlikte, derin kriyojenik işlemin karbürlerin çökelmesi sağlaması sonucu sertliğin artması mikroyapısal analizlerden belirlenmiştir. Çekme testi sonuçları karşılaştırıldığında statik tokluğun, rezilyans modülü, akma ve çekme mukavemeti değerleri bazında kriyojenik işlem uygulamasının temperlenmiş duruma kıyasla üstün olduğu tespit edilmiştir. KW - Su verme KW - Kriyojenik işlem KW - Fraktografi N2 - Deep cryogenic treatment is a special heat treatment process involving gradual cooling to subzero temperatures, holding, and heating. In this study, the effects of cryogenic treatment on the microstructural and mechanical behaviors of commercial medium carbon AISI 4140 steel were investigated. Specimens prepared for tensile testing were austenitized at 910°C and then oil quenching (S), oil quenching-tempering (ST) processes were applied. The cryogenic heat treatment process applied at -196°C was added to the conventional heat treatment procedure of the steel. The deep cryogenic treated specimens (DCT) were then tempered at 200°C for 1 hour. The effects of deep cryogenic treatment on the specimens were evaluated in terms of tensile test, hardness and microstructure. In the results, deep cryogenic treatment provided similar behavior compared to conventional heat treated specimens in terms of static toughness due to the precipitation of carbides and increase in hardness. It was observed that deep cryogenic treatment slightly improved the hardness compared to the tempered specimen (10%). However, the increase in hardness due to deep cryogenic treatment resulting in precipitation of carbides was determined from microstructural analysis. When the tensile test results were compared, it was determined that the cryogenic treatment application was superior to the tempered condition in terms of static toughness, resilience modulus, yield and tensile strength values. CR - Choo, S.-H., S. Lee, ve M. G. Golkovski. 2000. Effects of accelerated electron beam irradiation on surface hardening and fatigue properties in an AISI 4140 steel used for automotive crankshaft, Materials Science and Engineering: A, 293(1), 56-70. doi: https://doi.org/10.1016/S0921-5093(00)01207-7 CR - Chuaiphan, W., L. Srijaroenpramong, ve D. Pinpradub. 2013. The Effects of Heat Treatment on Microstructure and Mechanical Properties of AISI 4140 for Base Cutter Cane Harvester, Advanced Materials Research, 774-776(1059-67. doi: 10.4028/www.scientific.net/AMR.774-776.1059 CR - Dewan, M. W., J. Liang, M. A. Wahab, ve A. M. Okeil. 2014. Effect of post-weld heat treatment and electrolytic plasma processing on tungsten inert gas welded AISI 4140 alloy steel, Materials & Design (1980-2015), 54(6-13. doi: https://doi.org/10.1016/j.matdes.2013.08.035 CR - Jamali, A. R., W. Khan, A. D. Chandio, Z. Anwer, ve M. H. Jokhio. 2019. Effect of cryogenic treatment on mechanical properties of AISI 4340 and AISI 4140 steel, Mehran University Research Journal Of Engineering & Technology, 38(3), 755-66. doi: CR - Meysami, A. H., R. Ghasemzadeh, S. H. Seyedein, ve M. R. Aboutalebi. 2010. An investigation on the microstructure and mechanical properties of direct-quenched and tempered AISI 4140 steel, Materials & Design, 31(3), 1570-75. doi: https://doi.org/10.1016/j.matdes.2009.09.040 CR - Prabhu, P. R., S. M. Kulkarni, ve S. Sharma. 2020. Multi-response optimization of the turn-assisted deep cold rolling process parameters for enhanced surface characteristics and residual stress of AISI 4140 steel shafts, Journal of Materials Research and Technology, 9(5), 11402-23. doi: https://doi.org/10.1016/j.jmrt.2020.08.025 CR - Ranju, M. R., ve K. D. 2024. Effect of nano-graphene as an additive for the improved rolling contact fatigue life of through hardened AISI 4140 alloy steel, Tribology International, 192(109249. doi: https://doi.org/10.1016/j.triboint.2023.109249 CR - Salunkhe, S., D. Fabijanic, J. Nayak, ve P. Hodgson. 2015. Effect of Single and Double Austenitization Treatments on the Microstructure and Hardness of AISI D2 Tool Steel, Materials Today: Proceedings, 2(4), 1901-06. doi: https://doi.org/10.1016/j.matpr.2015.07.145 CR - Senthilkumar, D., I. Rajendran, ve M. Pellizzari. 2011. Effect of cryogenic treatment on the hardness and tensile behaviour of AISI 4140 steel, International Journal of Microstructure and Materials Properties, 6(5), 366-77. doi: 10.1504/IJMMP.2011.043573 CR - Singh, H., A. K. Singh, Y. K. Singla, K. Chattopadhyay, A. Saini, ve K. Singh. 2022. Interpretation of the wear characteristics of AISI 4140 under nano-fly ash based engine lubricant, Materials Today: Proceedings, 50(1683-89. doi: https://doi.org/10.1016/j.matpr.2021.09.160 CR - Sonar, T., S. Lomte, C. Gogte, ve V. Balasubramanian. 2018. Minimization of Distortion in Heat Treated AISI D2 Tool Steel: Mechanism and Distortion Analysis, Procedia Manufacturing, 20(113-18. doi: https://doi.org/10.1016/j.promfg.2018.02.016 CR - Xie, Z.-j., C.-j. Shang, X.-l. Wang, X.-m. Wang, G. Han, ve R.-d.-k. Misra. 2020. Recent progress in third-generation low alloy steels developed under M3 microstructure control, International Journal of Minerals, Metallurgy and Materials, 27(1), 1-9. doi: 10.1007/s12613-019-1939-x CR - Zhang, Y., R. Yuan, J. Yang, D. Xiao, D. Luo, W. Zhou, C. Tuo, H. Wu, ve G. Niu. 2022. Effect of tempering on corrosion behavior and mechanism of low alloy steel in wet atmosphere, Journal of Materials Research and Technology, 20(4077-96. doi: https://doi.org/10.1016/j.jmrt.2022.08.138 UR - https://doi.org/10.31796/ogummf.1611872 L1 - https://dergipark.org.tr/tr/download/article-file/4486504 ER -