TY - JOUR T1 - Geleceğin Ulaşım Alternatifleri: Batarya ve Yakıt Hücreli Araçların Ekonomik ve Çevresel Değerlendirmesi TT - Future Transport Alternatives: Economic and Environmental Assessment of Battery and Fuel Cell Vehicles AU - Sakaoğlu, Emir AU - Akbaş, Tarık AU - Ak, Muhammet PY - 2025 DA - June Y2 - 2025 DO - 10.64330/kiufemte.1615151 JF - KİÜ Fen, Mühendislik ve Teknoloji Dergisi PB - Kahramanmaraş İstiklal Üniversitesi WT - DergiPark SN - 3023-8307 SP - 48 EP - 62 VL - 2 IS - 1 LA - tr AB - Bataryalı elektrikli araçlar (BEV'ler) ve yakıt hücreli araçlar (FCV'ler), sürdürülebilir ulaşım çözümleri sunarak çevresel sorunların azaltılmasında önemli bir rol oynayabilir. BEV ve FCV teknolojileri, geleneksel ve hibrit araçlara kıyasla sera gazı salınımını ve hava kirliliğini kayda değer ölçüde düşürebilir. Ancak, bu araçların çevresel ve ekonomik etkileri, enerji kaynaklarının türüne ve üretim yöntemlerine bağlıdır. Birçok çalışma, BEV'lerin yaşam döngüsü boyunca genellikle FCV'lere göre daha düşük maliyetli ve çevreye daha az zararlı olduğunu ortaya koymaktadır. Özellikle yenilenebilir enerji kaynaklarından elde edilen elektrikle çalışan BEV'ler, çevre dostu bir alternatif olarak öne çıkmaktadır. Batarya teknolojilerindeki gelişmeler ve destekleyici politikalar, BEV'lerin ekonomik açıdan daha rekabetçi hale gelmesini sağlayabilir. Bununla birlikte, BEV'lerin yüksek başlangıç maliyetleri ve sınırlı menzil gibi dezavantajları da bulunmaktadır. Diğer yandan, FCV'ler uzun mesafelerde sağladıkları avantajlar ve hidrojen altyapısıyla dikkat çekmektedir. Ancak, hidrojen üretimi ve depolanması sırasında harcanan yüksek enerji ve maliyetler, bu araçların çevresel ve ekonomik performansını sınırlandırabilir. Ayrıca, karbon emisyonuna dayalı yakıt vergileri ve batarya maliyetlerinin düşmesiyle BEV'lerin rekabet gücü daha da artabilir. Her iki araç türü de yenilenebilir enerji kaynaklarının kullanımını teşvik ederek enerji dönüşümüne katkıda bulunabilir. BEV'ler ve FCV'ler arasındaki tercih, enerji kaynaklarının çeşitliliğine ve altyapı yatırımlarına bağlı olarak değişebilir. Gelecekte hangi teknolojinin ön planda olacağı, maliyetler, çevresel etkiler ve teknolojik gelişmeler gibi faktörlere bağlı olarak değerlendirilmelidir. KW - Batarya Elektrikli Araçlar (BEV) KW - Yakıt Hücreli Elektrikli Araçlar (FCEV) KW - Sera Gazı Emisyonları KW - Yenilenebilir Enerji Kaynakları (RES) N2 - Battery electric vehicles (BEVs) and fuel cell vehicles (FCVs) can play a significant role in reducing environmental issues by providing sustainable transportation solutions. BEV and FCV technologies can substantially reduce greenhouse gas emissions and air pollution compared to traditional and hybrid vehicles. However, the environmental and economic impacts of these vehicles depend on the type and methods of energy production. Many studies indicate that BEVs are generally more cost-effective and less harmful to the environment over their lifecycle compared to FCVs. BEVs powered by electricity from renewable energy sources stand out as an eco-friendly alternative. Developments in battery technologies and supportive policies can make BEVs more economically competitive. However, BEVs also have disadvantages such as high initial costs and limited range. On the other hand, FCVs are notable for their advantages over long distances and their hydrogen infrastructure. However, the high energy and costs involved in hydrogen production and storage can limit the environmental and economic performance of these vehicles. Additionally, fuel taxes based on carbon emissions and decreasing battery costs can increase the competitiveness of BEVs. Both types of vehicles can contribute to energy transition by promoting the use of renewable energy sources. The preference between BEVs and FCVs may vary depending on the diversity of energy sources and infrastructure investments. The future prominence of each technology should be evaluated based on factors such as costs, environmental impacts, and technological advancements. CR - Ajanovic, A., & Haas, R. (2018). Economic and environmental prospects for battery electric- and fuel cell vehicles: A review. Renewable and Sustainable Energy Reviews, 81, 964–980. https://doi.org/10.1016/j.rser.2017.07.052 CR - Burkhardt, U., Peters, K., & Noppel, F. (2016). Impact of alternative fuels on the atmospheric composition and climate – The case of hydrogen-powered aircraft. Atmospheric Environment, 126, 334–345. https://doi.org/10.1016/j.atmosenv.2015.11.047 CR - Cansino, J. M., Pablo-Romero, M. del P., Román, R., & Yñiguez, R. (2010). Promoting renewable energy sources for heating and cooling in EU-27 countries. Energy Policy, 38(11), 6211–6220. https://doi.org/10.1016/j.enpol.2010.06.033 CR - Felgenhauer, M., Ohi, J., & Shapiro, J. N. (2016). Transitioning to hydrogen: A comparison of startup cost across energy carriers. International Journal of Hydrogen Energy, 41(17), 7254–7263. https://doi.org/10.1016/j.ijhydene.2016.03.034 CR - Hall, D., & Lutsey, N. (2017). Emerging best practices for electric vehicle charging infrastructure. International Council on Clean Transportation (ICCT) Report. https://theicct.org/publications/emerging-best-practices-electric-vehicle-charging-infrastructure CR - Hawkins, T. R., Gausen, O. M., & Strømman, A. H. (2013). Environmental impacts of hybrid and electric vehicles—a review. International Journal of Life Cycle Assessment, 18, 183–200. https://doi.org/10.1007/s11367-012-0440-9 CR - Lombardi, L., Tribioli, L., Cozzolino, R., & Bella, G. (2017). Comparative environmental assessment of conventional, electric, hybrid, and fuel cell vehicles. Energy Conversion and Management, 143, 528–541. https://doi.org/10.1016/j.enconman.2017.04.064 CR - Lucas, A., Silva, C. A., & Neto, R. C. (2012). Life cycle analysis of energy consumption and GHG emissions of electric vehicles in Europe. Energy Policy, 49, 286–300. https://doi.org/10.1016/j.enpol.2012.06.054 CR - McDonald, A., & Schrattenholzer, L. (2002). Learning rates for energy technologies. Energy Policy, 29(4), 255–261. https://doi.org/10.1016/S0301-4215(00)00122-1 CR - Miotti, M., Hofer, J., & Bauer, C. (2017). Life cycle environmental impacts of electric mobility: A comparison between battery electric, plug-in hybrid, and fuel cell vehicles. Environmental Science & Technology, 51(5), 3119–3128. https://doi.org/10.1021/acs.est.6b00177 CR - Notter, D. A., Gauch, M., Widmer, R., Wäger, P. A., Stamp, A., Zah, R., & Althaus, H. J. (2015a). Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environmental Science & Technology, 44(17), 6550–6556. https://doi.org/10.1021/es903729a CR - Reddi, K., Elgowainy, A., Wang, M., & Rustagi, N. (2014). Current status and future growth of hydrogen production for light-duty vehicles. International Journal of Hydrogen Energy, 39(35), 20467–20475. https://doi.org/10.1016/j.ijhydene.2014.08.041 CR - Robinius, M., Otto, A., Syranidis, K., Riedel, T., & Stolten, D. (2018). Linking the power and transport sectors—Part 1: The principle of sector coupling. International Journal of Hydrogen Energy, 43(38), 17616–17630. https://doi.org/10.1016/j.ijhydene.2018.07.051 UR - https://doi.org/10.64330/kiufemte.1615151 L1 - https://dergipark.org.tr/tr/download/article-file/4500652 ER -