TY - JOUR T1 - A new model for transmission line modelling (TLM) method to investigate frequency-dependent bioelectromagnetic interactions TT - İletim hattı modelleme (İHM) yöntemi ile frekansa bağlı biyoelektromanyetik etkileşim için yeni bir model tasarımı AU - Arıcıoğlu, Burak AU - Ferikoğlu, Abdullah PY - 2025 DA - September Y2 - 2025 DO - 10.46810/tdfd.1615276 JF - Türk Doğa ve Fen Dergisi JO - TJNS PB - Bingöl Üniversitesi WT - DergiPark SN - 2149-6366 SP - 120 EP - 129 VL - 14 IS - 3 LA - en AB - In this article, a new transmission line model is presented for frequency-dependent analysis of bioelectromagnetic interactions. For the frequency-dependent analysis, the transmission line is modelled with dependent voltage sources in PSpice, allowing the transmission line lumped parameters to be defined as functions of frequency. This approach enables frequency-dependent analysis with a single simulation. As an example, the frequency-dependent electric field distribution in a multilayer human tissue model for the frequency range of 1 GHz and 100 GHz is investigated. The multilayer tissue model consists of skin, fat, and muscle layers. A finite element method (FEM)-based analysis of the electric field distribution in the multilayer tissue model is also conducted at the resonant frequency of the model, determined in this study to be 10.44 GHz. The TLM and FEM-based results are in good accordance. Additionally, the skin depth of the multilayer tissue model is calculated. The results from both the electric field distribution analysis and the skin depth calculation confirm the accuracy of the proposed frequency-dependent transmission line model. Finally, the study examines the frequency-dependent electromagnetic energy absorption in the multilayer tissue model across the 1 GHz to 100 GHz frequency range. KW - TLM KW - skin depth KW - SAR N2 - Bu makalede biyoelektromanyetik etkileşimlerin frekansa bağlı analizi için yeni bir iletim hattı modeli sunulmaktadır. Frekansa bağlı analiz için iletim hattı, PSpice programında bağımlı voltaj kaynaklarıyla modellenerek iletim hattı toplu parametrelerinin frekansa bağlı fonksiyonlar olarak tanımlanmıştır. Bu yaklaşım ile tek bir simülasyonla frekansa bağlı analiz gerçekleştirilebilir. Örnek olarak çok katmanlı bir insan doku modelinde 1 GHz ile 100 GHz frekans aralığı için frekansa bağlı elektrik alan dağılımı incelenmiştir. Çok katmanlı doku modeli deri, yağ ve kas katmanlarından oluşmaktadır. Yapılan analizde modelin rezonans frekansı 10,44 GHz olarak belirlenmiştir. Bu frekans için sonlu elemanlar yöntemi ile analiz gerçekleştirilmiştir. İletim hattı modelleme ve sonlu eleman yöntemleri ile elde edilen sonuçlar oldukça uyumlu olduğu gözlemlenmiştir. Ayrıca çok katmanlı doku modelinde deri kalınlığı hesaplanmıştır. Simülasyondan ve hesaplamadan elde edilen deri kalınlığı değerleri birbiriyle uyumlu olduğu gözlemlenmiştir. Bu da önerilen iletim hattı modelinin başarımını göstermektedir. Son olarak çalışma, 1 GHz ila 100 GHz frekans aralığında çok katmanlı doku modelinde frekansa bağlı elektromanyetik enerji emilimini incelenmiştir. CR - Zhang J, Jin J, Li X, Feng F, Liu W, Zhang W, et. al. A Novel Design Space Decomposition Technique to Accelerate FEM-Based Electromagnetic Topology Optimization for Waveguide Structures. IEEE Transactions on Microwave Theory and Techniques. 2024. CR - Chai SR, Meng LH, Zou YF, Dai PK. Fast Computation of EM Scattering from Moving PEC Target Based on MT-ACA-MoM Algorithm. IEEE Antennas and Wireless Propagation Letters. 2024. CR - Ball JM, Li W. Using high-resolution microscopy data to generate realistic structures for electromagnetic FDTD simulations from complex biological models. Nature Protocols. 2024; 1-33. CR - Lin G, Huang T, Cai W, Gong D, Jin X. An Efficient Scheme of Waveguide Port Modeling Based on Conformal and Nonuniform Mesh for Time Domain Finite Integration Technique. IEEE Transactions on Antennas and Propagation. 2024. CR - Wang X, Huang B. Analysis of conductor losses of planar transmission lines with surface roughness by the method of lines. Applied Computational Electromagnetics Society Symposium (ACES), 2017; p.1-2. CR - Johns PB, Beurle RL. Numerical solutions of 2-dimentional scattering problems using a transmission-line matrix. Proc IEEE. 1971; 118(9): 1203-1208. CR - Park S, Kotzev M, Brüns HD, Kam DG, Schuster C. Lessons from applying IEEE standard 1597 for validation of computational electromagnetics computer modeling and simulations. IEEE Electromagnetic Compatibility Magazine. 2017; 6(2): p.55-67. CR - Sheng XQ, Song W. Essentials of computational electromagnetics. John Wiley & Sons. 2011. CR - Ayari M, Gharbi A, El Touati Y, Klai Z, Elsayed MS. Advanced numerical methods in electromagnetics: techniques and applications. Letters in High Energy Physics. 2024; 791–803. CR - Rylander T, Ingelström P, Bondeson A. Computational electromagnetics. Springer Science & Business Media. 2012. CR - Duffy AP. The application of transmission-line modelling to EMC design. Does Electromagnetic Modelling Have A Place in EMC Design IEE Colloquium on IET. 1993. CR - Weiland T. Finite integration method and discrete electromagnetism. In: Monk P, Carstensen C, Funken S, Hackbusch W, Hoppe RHW, editors. Computational Electromagnetics. Lecture Notes in Computational Science and Engineering, vol. 28. Springer, Berlin, Heidelberg. 2003. CR - Schiesser WE. Method of lines PDE analysis in biomedical science and engineering. John Wiley & Sons. 2016. CR - Kron G. Equivalent circuits to represent the electromagnetic field equations. Physical Review. 1943; (643)-4: 126. CR - Kron G. Equivalent circuit of the field equations of Maxwell-I. Proceedings of the IRE 325. 1944; p.289-299. CR - Peter JB, Beurle RL. Numerical solution of 2-dimensional scattering problems using a transmission-line matrix. Proceedings of the Institution of Electrical Engineers.1971; 118(9). CR - Portnoy WM. PSPICE as a simulation tool in teaching electrodynamics. In: Technology-Based Re-Engineering Engineering Education, Proceedings of Frontiers in Education (FIE'96) 26th Annual Conference. IEEE. 1996; 1: 238–241. CR - Tobin P. The role of PSpice in the engineering teaching environment. In: International Conference on Engineering Education – ICEE. 2007. CR - Ferikoğlu A, Çerezci O, Kahriman M, Yener ŞÇ. Electromagnetic absorption rate in a multilayer human tissue model exposed to base-station radiation using transmission line analysis. IEEE Antennas and Wireless Propagation Letters. 2014; 13: 903–906. CR - Curto S, Ammann MJ. Electromagnetic interaction between resonant loop antenna and simulated biological tissue. Microw Opt Techn Let. 2006; 48(12): 2418–2421. CR - Zhang HH, Lin ZC, Wei EI, Choi WW, Tam KW, Donoro DG, et. al. Electromagnetic-thermal analysis of human head exposed to cell phones with the consideration of radiative cooling. IEEE Antennas and Wireless Propagation Letters.2018; 17(9): 1584-1587. CR - Lee AK, Choi HD. Environmental EMF Evaluation for Mobile Communication Base Stations. 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) IEEE;2021. p. 1-2 CR - Karipidis K, Baaken D, Loney T, Blettner M, Brzozek C, Elwood M et.al. The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A systematic review of human observational studies–Part I: Most researched outcomes. Environment International. 2024;108983. CR - Wang H. Analysis of electromagnetic energy absorption in the human body for mobile terminals. IEEE Open Journal of Antennas and Propagation. 2020; 1: p. 113-117. CR - Melia G. Electromagnetic absorption by the human body from 1-15 GHz (Doctoral dissertation) University of York, 2013. CR - Maiorana E, Ramaccia D, Stefanini L, Toscano A, Bilotti F, Campisi P. Biometric Recognition Based on Hand Electromagnetic Scattering at Microwaves. IEEE Transactions on Microwave Theory and Techniques, 2023. CR - Azzaz-Rahmani S, Zerrouki H, Dekkiche L. Novel Microstrip Patch Antenna for implantable medical telemetry devices. Journal of Applied Science and Engineering. 2021; 24(6): p.853-860. CR - Moreno P, Ambrosio A, Gómez P. The characteristics approach for modeling single phase transmission lines with frequency dependent electrical parameters. Transmission and Distribution Conference and Exposition: Latin America 2008 IEEE/PES;2008. p. 1-4. CR - Lin JC. Microwave propagation in biological dielectrics with application to cardiopulmonary interrogation. Medical applications of microwave imaging. 1986; p.47–58. CR - Hennig A, vom Bogel G. Analysis of power absorption by human tissue in deeply implantable medical sensor transponders. Advanced Microwave Circuits and Systems. 2010. CR - Schwan HP, Foster KR. RF-field interactions with biological systems: electrical properties and biophysical mechanisms. Proceedings of the IEEE. 1980; 68(1): p.104–113. CR - Barchanski A. Simulations of low-frequency electromagnetic fields in the human body. (Phd thesis) Berlin: Technische Universitt; 2007 CR - Stuchly MA. Biological Effects of Electromagnetic Fields. International Journal of Bioelectromagnetism. 2002; 14(2): p.157–160 CR - Ziskin MC, Alekseev SI, Foster KR, Balzano Q. Tissue models for RF exposure evaluation at frequencies above 6 GHz. Bioelectromagnetics. 2018; 39(3): 173–189. CR - Gustrau F, Bahr A. W-band investigation of material parameters, SAR distribution, and thermal response in human tissue. IEEE Transactions on Microwave Theory and Techniques. 2002; 50(10): 2393–2400. CR - Sabbah AI, Dib NI, Al-Nimr MA. Evaluation of specific absorption rate and temperature elevation in a multi-layered human head model exposed to radio frequency radiation using the finite-difference time domain method. IET Microwaves, Antennas & Propagation. 2011; 5(9): 1073–1080. CR - Kaburcuk F, Elsherbeni AZ, Lumnitzer R, Tanner A. Electromagnetic waves interaction with a human head model for frequencies up to 100 GHz. Applied Computational Electromagnetics Society Journal (ACES). 2020; 613–621. CR - Grund J, Rathjen KU, Rädel C, Stiemer M, Dickmann S. Planar multilayer model of human tissue exposed to a plane electromagnetic wave. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 2020; 5(4): 305–312. CR - Laganà F, Bibbò L, Calcagno S, De Carlo D, Pullano SA, Pratticò D, Angiulli G. Smart electronic device-based monitoring of SAR and temperature variations in indoor human tissue interaction. Applied Sciences. 2025; 15(5): 2439. CR - Hong-Wei D. et. al. Effective skin depth for multilayer coated conductor. Progress In Electromagnetics Research. 2009; p.1-8. CR - Kanezaki A, Hirata A, Watanabe S, Shirai H. Effects of dielectric permittivities on skin heating due to millimeter wave exposure. BioMedical Engineering OnLine. 2009; 8(1): 20. CR - Christ A, Samaras T, Neufeld E, Kuster N. RF-induced temperature increase in a stratified model of the skin for plane-wave exposure at 6–100 GHz. Radiation Protection Dosimetry. 2020; 188(3): 350–360. CR - Kaburcuk F. Effect of skin thickness on electromagnetic dosimetry analysis of a human body model up to 100 GHz. International Journal of Microwave and Wireless Technologies. 2024; 16(8): 1373–1380. UR - https://doi.org/10.46810/tdfd.1615276 L1 - https://dergipark.org.tr/tr/download/article-file/4501153 ER -