TY - JOUR T1 - A Paradigm on the Qualitative Behavior of Dynamical Systems Inspired by Circuit Theory TT - Devre Teorisinden Esinlenerek Dinamik Sistemlerin Niteliksel Davranışı Üzerine Bir Paradigma AU - Ateş, Muzaffer AU - Ateş, Muhammet PY - 2025 DA - August Y2 - 2025 DO - 10.53433/yyufbed.1617145 JF - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - YYUFBED PB - Van Yüzüncü Yıl Üniversitesi WT - DergiPark SN - 1300-5413 SP - 699 EP - 707 VL - 30 IS - 2 LA - en AB - In this paper, we consider the qualitative analysis of a liquid mechanical tank system with an electrical model. In the prototype phase, such models are more flexible like the construction process of the first nuclear reactors. The mathematical model of this dynamic system is nonlinear and time-varying. Here, physical principles and engineering specifications will be used to find unique results without any mathematical approximation. The energy function of the system is constructed with intuitive physical principles. The system also will be discussed with and without feedback control laws. Global asymptotic controllability of the equilibrium point of the system will be determined. The literature presents us, the level control works with a few multi-tanks up to six. We generalize those with tanks from a different theoretical perspective. The readymade system and candidate Lyapunov function will not be used here; the study will be conducted by constructing them. The effectiveness of the control mechanism will be determined by both theoretical analysis and simulation. According to the proposed algorithm, the measurement of liquid levels in tanks can be made in volts anywhere in the system, collectively or individually. The algorithm is clear, not large time-consuming and the solution cost is not expensive. Some simulations are also presented that validate our theoretical predictions. KW - Liquid level control KW - Lyapunov KW - Passivity KW - PD control KW - Stability N2 - Bu makalede, elektriksel bir modele sahip sıvı mekanik tank sisteminin nitel analizini ele alıyoruz. Prototip aşamasında, bu tür modeller ilk nükleer reaktörlerin inşa süreci gibi daha esnektir. Bu dinamik sistemin matematiksel modeli doğrusal olmayan ve zamanla değişendir. Burada, herhangi bir matematiksel yaklaşım olmaksızın benzersiz sonuçlar bulmak için fiziksel ilkeler ve mühendislik özellikleri kullanılacaktır. Sistemin enerji fonksiyonu sezgisel fiziksel ilkelerle oluşturulmuştur. Sistem ayrıca geri bildirim kontrol yasalarıyla ve onlarsız olarak tartışılacaktır. Sistemin denge noktasının küresel asimptotik kontrol edilebilirliği belirlenecektir. Literatür bize seviye kontrolünün altıya kadar birkaç çoklu tankla çalıştığını göstermektedir. Bunları tanklarla farklı bir teorik bakış açısıyla tank olarak genelleştiriyoruz. Hazır sistem ve aday Lyapunov fonksiyonu burada kullanılmayacak; çalışma bunları inşa ederek yürütülecektir. Kontrol mekanizmasının etkinliği hem teorik analiz hem de simülasyonla belirlenecektir. Önerilen algoritmaya göre, tanklardaki sıvı seviyelerinin ölçümü sistemin herhangi bir yerinde, topluca veya ayrı ayrı volt cinsinden yapılabilir. Algoritma açıktır, çok zaman alıcı değildir ve çözüm maliyeti pahalı değildir. Ayrıca teorik tahminlerimizi doğrulayan bazı simülasyonlar da sunulmuştur. CR - Ates, M. (2021). Circuit theory approach to stability and passivity analysis of nonlinear dynamical systems. International Journal of Circuit Theory and Applications, 50(1), 214–225. https://doi.org/10.1002/cta.3159 CR - Başçi, A., & Derdiyok, A. (2016). Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement, 91, 12–18. https://doi.org/10.1016/j.measurement.2016.05.026 CR - Biswas, P. P., Srivastava, R., Ray, S., & Samanta, A. N. (2009). Sliding mode control of quadruple tank process. Mechatronics, 19(4), 548–561. https://doi.org/10.1016/j.mechatronics.2009.01.001 CR - Eduardo, D. S. (1998). Mathematical control theory Deterministic finite dimensional systems. Second edition, Springer-Verlag New York, pp.218–230. CR - Edwards, C. H., & Penney, D. E. (2018). Elementary differential equations with boundary value problems (Classic version, 6th ed.). Pearson. ISBN: 9780134995410 CR - Iplikci, S. (2010). A support vector machine based control application to the experimental three-tank system. ISA Transactions, 49(3), 376–386. https://doi.org/10.1016/j.isatra.2010.03.013 CR - Kämpjärvi, P., & Jämsä-Jounela, S. L. (2003). Level control strategies for flotation cells. Minerals Engineering, 16(11), 1061–1068. https://doi.org/10.1016/j.mineng.2003.06.004 CR - Raff, T., Huber, S., Nagy, Z. K., & Allgower, F. (2006, October). Nonlinear model predictive control of a four tank system: An experimental stability study. IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776652 CR - Sankar, G. S., Kumar, S. M., Narasimhan, S., & Bhallamudi, S. M. (2015). Optimal control of water distribution networks with storage facilities. Journal of Process Control, 32, 127–137. https://doi.org/10.1016/j.jprocont.2015.04.007 CR - Sbarbaro, D., & Ortega, R. (2005, December). Averaging level control of multiple tanks: a passivity based approach. Proceedings of the 44th IEEE Conference on Decision and Control. Sevilla, Spain. https://doi.org/10.1109/cdc.2005.1583353 CR - Singh, A. P., Mukherjee, S., & Nikolaou, M. (2014). Debottlenecking level control for tanks in series. Journal of Process Control, 24(3), 158–171. https://doi.org/10.1016/j.jprocont.2013.12.002 CR - Tunç, C., & Ateş, M. (2006). Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dynamics, 45(3), 273–281. https://doi.org/10.1007/s11071-006-1437-3 CR - Wang, J. L., Wu, H.N., Huang, T., Ren, S.Y., & Wu, J. (2018). Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength. IEEE Transactions on Neural Networks and Learning Systems, 29(2), 364–376, https://doi.org/10.1109/tnnls.2016.2627083 CR - Wang, J. L., Wu, H.N., Huang, T., Ren, S.Y., & Wu, J. (2017). Passivity of directed and undirected complex dynamical networks with adaptive coupling weights. IEEE Transactions on Neural Networks and Learning Systems, 28(8), 1827–1839. https://doi.org/10.1109/tnnls.2016.2558502 CR - Willems, J. C. (1972). Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis, 45(5), 321–351. https://doi.org/10.1007/bf00276493 CR - Xiuyun, S. (2015). Adaptive nonlinear control for multi-tank level system. The Open Automation and Control Systems Journal, 7(1), 496–501, https://doi.org/10.2174/1874444301507010496 CR - Xu, T., Yu, H., Yu, J., & Meng, X. (2020). Adaptive disturbance attenuation control of two tank liquid level system with uncertain parameters based on port-controlled Hamiltonian. IEEE Access, 8, 47384–47392. https://doi.org/10.1109/access.2020.2979352 CR - Yang, C., Sun, J., Zhang, Q., & Ma, X. (2013). Lyapunov stability and strong passivity analysis for nonlinear descriptor systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(4), 1003–1012. https://doi.org/10.1109/tcsi.2012.2215396 CR - Yu, H., Yu, J., Wu, H., & Li, H. (2013). Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dynamics, 73(4), 2149–2156. https://doi.org/10.1007/s11071-013-0930-8 CR - Zhang, L., & Yu, L. (2013). Global asymptotic stability of certain third‐order nonlinear differential equations. Mathematical Methods in the Applied Sciences, 36(14), 1845–1850. https://doi.org/10.1002/mma.2729 UR - https://doi.org/10.53433/yyufbed.1617145 L1 - https://dergipark.org.tr/tr/download/article-file/4509193 ER -