TY - JOUR T1 - Photocharacterization and pH Sensing Properties of a Novel Synthesized Fluorescent Schiff Base Derivative TT - Yeni Sentezlenen Floresan Schiff Bazı Türevinin Fotokarakterizasyonu ve pH Algılama Özellikleri AU - Zurnacı, Merve PY - 2025 DA - September Y2 - 2025 DO - 10.31466/kfbd.1617959 JF - Karadeniz Fen Bilimleri Dergisi JO - KFBD PB - Giresun Üniversitesi WT - DergiPark SN - 2564-7377 SP - 1119 EP - 1132 VL - 15 IS - 3 LA - en AB - Design and synthesis of different, highly sensitive and fast response fluorescent materials are very important in the development of pH sensors. In this study, a new pH-sensitive Schiff-base ligand (PHS1) was synthesized by the condensation reaction of newly synthesized 1,3,4-thiadiazole derivative containing phenanthroimidazole (PHT1) with 3,5-ditertbutylsalicylaldehyde (1:1) in ethanol. The molecular structure was confirmed by structural characterization methods. The absorption and fluorescence properties of PHS1 were investigated in DMSO to determine the photocharacterization properties. Then, PHS1 was investigated as a fluorescent pH sensor. UV absorption and emission studies of PHS1 with varying pH (at pH=2.0, 4.0, 6.0, 8.0, 10.0 and 12.0) were determined in Britton-Robinson buffer. The absorption wavelength recorded at 345 nm at pH 2.0 showed bathochromic effect as pH increased (at pH= 4.0; 6.0 and 8.0). At pH 10.0 and 12.0, PHS1 showed two absorption peaks at 357 nm and a new low energy absorption band at 405 nm. The fluorescence spectrum of PHS1 showed a red shift with an increasing wavelength from 439 nm to 473 nm between pH=2.0 and 12.0. These results showed that PHS1 is sensitive to pH change in acidic and basic environments. KW - Schiff Base Derivative KW - pH Sensor KW - Photocharacterization KW - UV-Vis absorption KW - Fluorescence N2 - pH sensörlerinin geliştirilmesinde, farklı, yüksek hassasiyet ve hızlı tepki floresan malzemelerin tasarımı ve sentezi çok önemlidir. Bu çalışmada, yeni sentezlenen fenantroimidazol içeren 1,3,4-tiyadiazol türevinin (PHT1) etanolde 3,5-ditertbütilsalisilaldehit (1:1) ile kondenzasyon reaksiyonu ile yeni bir pH-duyarlı Schiff bazı ligandı (PHS1) sentezlendi. Moleküler yapı, yapısal karakterizasyon yöntemleri ile doğrulandı. PHS1'in absorpsiyon ve floresan özellikleri, fotokarakterizasyon özelliklerini belirlemek için DMSO'da incelendi. Daha sonra, PHS1 floresan pH sensörü olarak araştırıldı. PHS1'in değişen pH'ta (pH=2,0, 4,0, 6,0, 8,0, 10,0 ve 12,0'da) UV absorpsiyon ve emisyon çalışmaları Britton-Robinson tamponunda belirlendi. pH 2,0'de 345 nm'de kaydedilen emilim dalga boyu, pH arttıkça batokromik etki gösterdi (pH= 4,0'da; 6,0 ve 8,0). pH 10,0 ve 12,0'de, PHS1 357 nm'de iki emilim tepe noktası ve 405 nm'de yeni bir düşük enerjili emilim bandı gösterdi. PHS1'in floresan spektrumu pH=2,0-12,0 arasında 439 nm’den 473 nm’ye artan bir dalga boyu ile kırmızıya kayma gösterdi. Bu sonuçlar PHS1'in asidik ve bazik ortamlardaki pH değişimine duyarlı olduğunu gösterdi. CR - Alata, I., Broquier, M., Dedonder, C., Jouvet, C., & Marceca, E. (2012). Electronic excited states of protonated aromatic molecules: Protonated Fluorene. Chemical Physics, 393(1), 25–31. https://doi.org/10.1016/j.chemphys.2011.11.013 CR - Baldini, F. (1999, February 23). Critical review of pH sensing with optical fibres (R. A. Lieberman, ed.). https://doi.org/10.1117/12.339779 CR - Belko, N., Maltanava, H., Lugovski, A., Ferreira, R. A. S., Correia, S. F. H., Shabunya, P., … Samtsov, M. (2023). pH-Sensitive fluorescent sensor for Fe(III) and Cu(II) ions based on rhodamine B acylhydrazone: Sensing mechanism and bioimaging in living cells. Microchemical Journal, 191, 108744. https://doi.org/10.1016/j.microc.2023.108744 CR - Berhanu, A. L., Gaurav, Mohiuddin, I., Malik, A. K., Aulakh, J. S., Kumar, V., & Kim, K.-H. (2019). A review of the applications of Schiff bases as optical chemical sensors. TrAC Trends in Analytical Chemistry, 116, 74–91. https://doi.org/10.1016/j.trac.2019.04.025 CR - Bhardwaj, V., Ashok Kumar, S. K., & Sahoo, S. K. (2022). Fluorescent sensing (Cu2+ and pH) and visualization of latent fingerprints using an AIE-active naphthaldehyde-pyridoxal conjugated Schiff base. Microchemical Journal, 178, 107404. https://doi.org/10.1016/j.microc.2022.107404 CR - Brouwer, A. M. (2011). Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure and Applied Chemistry, 83(12), 2213–2228. https://doi.org/10.1351/PAC-REP-10-09-31 CR - Grante, I., Actins, A., & Orola, L. (2014). Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 326–332. https://doi.org/10.1016/j.saa.2014.03.059 CR - Halder, S., Bhattacharjee, A., Roy, A., Chatterjee, S., & Roy, P. (2016). Chromogenic and fluorescence sensing of pH with a Schiff-base molecule. RSC Adv., 6(45), 39118–39124. https://doi.org/10.1039/C6RA06284A CR - Halder, S., Dey, S., & Roy, P. (2015). A quinoline based Schiff-base compound as pH sensor. RSC Advances, 5(68), 54873–54881. https://doi.org/10.1039/C5RA07538F CR - Halder, S., Hazra, A., & Roy, P. (2018). Colorimetric and fluorescence sensing of pH with a Schiff-base molecule. Journal of Luminescence, 195, 326–333. https://doi.org/10.1016/j.jlumin.2017.11.055 CR - Huang, S., Ding, J., Bi, A., Yu, K., & Zeng, W. (2021). Insights into Optical Probes Based on Aggregation‐Induced Emission: from Restriction of Intramolecular Motions to Dark State. Advanced Optical Materials, 9(21). https://doi.org/10.1002/adom.202100832 CR - Hwang, S. M., Chae, J. B., & Kim, C. (2018). A Phenanthroimidazole-based Fluorescent Turn-Off Chemosensor for the Selective Detection of Cu2+ in Aqueous Media. Bulletin of the Korean Chemical Society, 39(8), 925–930. https://doi.org/10.1002/bkcs.11526 CR - Kaya, İ., Aydın, A., & Yıldırım, M. (2012). Synthesis and Spectrophotometric PH Sensing Applications of Poly-2-[4-(diethylaminophenyl)imino]-5-nitro-phenol and its Schiff Base Monomer for Two Different PH Ranges. Journal of Fluorescence, 22(1), 495–504. https://doi.org/10.1007/s10895-011-0983-3 CR - Khandogin, J., & Brooks, C. L. (2005). Constant pH Molecular Dynamics with Proton Tautomerism. Biophysical Journal, 89(1), 141–157. https://doi.org/10.1529/biophysj.105.061341 CR - Kumar, A., Virender, Saini, M., Mohan, B., Shayoraj, & Kamboj, M. (2022). Colorimetric and fluorescent Schiff base sensors for trace detection of pollutants and biologically significant cations: A review (2010–2021). Microchemical Journal, 181, 107798. https://doi.org/10.1016/j.microc.2022.107798 CR - Li, S.-S., Zhou, H.-T., Li, H.-Z., Zhong, L.-C., Zhang, F.-H., Sun, F.-B., … Zheng, Y.-C. (2024). Recent advances in the development of fluorescent sensors for sulfur mustard detection. Journal of Materials Chemistry C, 12(27), 9914–9928. https://doi.org/10.1039/D4TC01159G CR - Ma, C., Xie, G., Zhang, X., Yang, L., Li, Y., Liu, H., … Wei, Y. (2017). Biocompatible fluorescent polymers from PEGylation of an aggregation-induced emission dye. Dyes and Pigments, 139, 672–680. https://doi.org/10.1016/j.dyepig.2016.12.070 CR - Maity, D., Halder, S., & Roy, P. (2018). High pH Sensing Properties of a New Schiff‐base Compound. ChemistrySelect, 3(2), 440–445. https://doi.org/10.1002/slct.201702307 CR - Mao, L., Liu, Y., Yang, S., Li, Y., Zhang, X., & Wei, Y. (2019). Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules. Dyes and Pigments, 162, 611–623. https://doi.org/10.1016/j.dyepig.2018.10.045 CR - Musikavanhu, B., Liang, Y., Xue, Z., Feng, L., & Zhao, L. (2023). Strategies for Improving Selectivity and Sensitivity of Schiff Base Fluorescent Chemosensors for Toxic and Heavy Metals. Molecules, 28(19), 6960. https://doi.org/10.3390/molecules28196960 CR - Namli, H., & Turhan, O. (2006). Background defining during the imine formation reaction in FT-IR liquid cell. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64(1), 93–100. https://doi.org/10.1016/j.saa.2005.07.020 CR - Nantaphol, S., Chailapakul, O., & Siangproh, W. (2015). Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sensors and Actuators B: Chemical, 207, 193–198. https://doi.org/10.1016/j.snb.2014.10.041 CR - Payal, R., Saroj, M. K., Sharma, N., & Rastogi, R. C. (2018). Photophysical behavior of some thymol based schiff bases using absorption and fluorescence spectroscopy. Journal of Luminescence, 198, 92–102. https://doi.org/10.1016/j.jlumin.2018.02.007 CR - Pervaiz, M., Shahin, M., Ejaz, A., Quratulain, R., Saeed, Z., Ashraf, A., … Younas, U. (2024). An overview of Aniline-Based Schiff base metal Complexes: Synthesis, characterization and biological activities - a review. Inorganic Chemistry Communications, 159, 111851. https://doi.org/10.1016/j.inoche.2023.111851 CR - Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff Bases—Structure, Importance and Classification. Molecules, 27(3), 787. https://doi.org/10.3390/molecules27030787 CR - Ryazanova, O. A., Voloshin, I. M., Makitruk, V. L., Zozulya, V. N., & Karachevtsev, V. A. (2007). pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(4–5), 849–859. https://doi.org/10.1016/j.saa.2006.04.027 CR - Shatir, T. M., Aly, K. A., Ebrahium, M. M., Saddeek, Y. B., & Ranjith Kumar, E. (2024). Linear and non-linear optical and dielectric properties of transition metals complexes films derived from Azo-Schiff base for photovoltaic applications. Journal of Molecular Liquids, 401, 124636. https://doi.org/10.1016/j.molliq.2024.124636 CR - Shu, J., Ni, T., Liu, X., Xu, B., Liu, L., Chu, W., … Jiang, W. (2021). Mechanochromism, thermochromism, protonation effect and discrimination of CHCl3 from organic solvents in a Et2N-substituted Salicylaldehyde Schiff base. Dyes and Pigments, 195, 109708. https://doi.org/10.1016/j.dyepig.2021.109708 CR - Silva, R. C., Canisares, F. S. M., Mutti, A. M. G., Pires, A. M., & Lima, S. A. M. (2023). Small Schiff base molecules derived from salicylaldehyde as colorimetric and fluorescent neutral-to-basic pH sensors. Dyes and Pigments, 213, 111191. https://doi.org/10.1016/j.dyepig.2023.111191 CR - Xiao, D., Qi, H., Teng, Y., Pierre, D., Kutoka, P. T., & Liu, D. (2021). Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Research Letters, 16(1), 167. https://doi.org/10.1186/s11671-021-03613-z CR - Yıldırım, N., & Yıldız, M. (2018). A Schiff Base Sensor Selective to Anions, Biological Activity and Spectral Studies. Journal of the Turkish Chemical Society Section A: Chemistry, 5(3), 1271–1278. https://doi.org/10.18596/jotcsa.431554 CR - Zurnacı, M., Şener, İ., Gür, M., & Şener, N. (2022). Study on Photophysical Properties of Novel Fluorescent Phenanthroimidazole-Thiadiazole Hybrid Derivatives. Journal of Fluorescence, 32(3), 1155–1169. https://doi.org/10.1007/s10895-022-02916-3 UR - https://doi.org/10.31466/kfbd.1617959 L1 - https://dergipark.org.tr/tr/download/article-file/4512756 ER -