TY - JOUR T1 - Multiple classification of brain tumor images using a new and efficient convolutional neural network-based model TT - Yeni ve etkili bir evrişimsel sinir ağı tabanlı model kullanılarak beyin tümörü görüntülerinin çoklu sınıflandırılması AU - Sevinç, Aynur AU - Kaya, Buket AU - Gül, Mehmet PY - 2025 DA - June Y2 - 2025 DO - 10.24012/dumf.1622271 JF - Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi JO - DUJE PB - Dicle Üniversitesi WT - DergiPark SN - 1309-8640 SP - 315 EP - 330 VL - 16 IS - 2 LA - en AB - In conventional methods, the detection of tumour disease from brain images using magnetic resonance imaging is a difficult and human error-prone field of study that requires an expert medical doctor. Incomplete or inaccurate detection of brain tumours can have significant undesirable consequences such as shortening of human life. In order to overcome these difficulties, many researchers are working on autonomous disease detection supported by artificial intelligence. The aim of this study is to utilise brain magnetic resonance images with deep learning architectures for fast and reliable autonomous cancer detection. In this study, brain images are classified using two different datasets and a convolutional neural network infrastructure, which are widely used in the publicly available literature. The results obtained as a result of experiments with similar parameters in training, validation and testing processes are compared in detail with other studies in the literature and the differences between them are presented. The new convolutional neural network-based model proposed in the study achieved 99.76% classification result in the accuracy evaluation metric. The results obtained showed that the model proposed in the study can be used with high accuracy in brain tumour detection and can shed light on other fields of study. KW - Brain tumor KW - classification KW - convolutional neural network-CNN KW - deep learning-DL KW - image processing N2 - Konvansiyonel yöntemlerde, manyetik rezonans görüntüleme (MRG) kullanılarak beyin görüntülerinden tümör hastalığının tespiti, uzman bir tıp doktoru gerektiren zor ve insan hatasına açık bir çalışma alanıdır. Beyin tümörlerinin eksik veya yanlış tespiti, insan ömrünün kısalması gibi önemli istenmeyen sonuçlara yol açabilir. Bu zorlukların üstesinden gelmek için birçok araştırmacı yapay zeka destekli otonom hastalık tespiti üzerinde çalışmaktadır. Bu çalışmanın amacı, hızlı ve güvenilir otonom kanser tespiti için derin öğrenme mimarileriyle beyin MR görüntülerini kullanmaktır. Bu çalışmada, kamuya açık literatürde yaygın olarak kullanılan iki farklı veri seti ve bir evrişimli sinir ağı (CNN) altyapısı kullanılarak beyin MR görüntüleri sınıflandırılmıştır. Eğitim, doğrulama ve test süreçlerinde benzer parametrelerle yapılan deneyler sonucunda elde edilen sonuçlar, literatürdeki diğer çalışmalarla ayrıntılı olarak karşılaştırılmış ve aralarındaki farklar ortaya konulmuştur. Çalışmada önerilen yeni CNN tabanlı model, doğruluk değerlendirme metriğinde %99,76 sınıflandırma sonucuna ulaşmıştır. Elde edilen sonuçlar çalışmada önerilen modelin beyin tümörü tespitinde yüksek doğrulukla kullanılabileceğini ve diğer çalışma alanlarına ışık tutabileceğini göstermiştir. CR - [1] K. D. Miller, Q. T. Ostrom, C. Kruchko, N. Patil, T. Tihan, G. Cioffi, ... & J. S. Barnholtz‐Sloan, “Brain and other central nervous system tumor statistics”, CA: a cancer journal for clinicians, vol. 71, no. 5, pp. 381-406, Sep. 2021, DOI: 10.3322/caac.21693. CR - [2] Cancer.Net, Brain Tumor_Statistics_Cancer, (2022). Date of Access: 12.06.2024 from https://www.cancer.net/cancer-types/brain-tumor/statistics CR - [3] Cancer survival rate: A tool to understand your prognosis - Mayo Clinic, (n.d.). Date of Access: 02.07.2024, from https://www.mayoclinic.org/diseases-conditions/cancer/in-depth/cancer/art-20044517 CR - [4] K. M. Iftekharuddin, J. Zheng, M. A. Islam & R. J. Ogg, “Fractal-based brain tumor detection in multimodal MRI”, Applied Mathematics and Computation, vol. 207, no.1, pp. 23-41, Jan. 2009, DOI: 10.1016/j.amc.2007.10.063. CR - [5] L. M. DeAngelis, “Brain tumors”, N. Engl. J. Med., vol. 344, no.2, pp. 114– 123, Jan. 2001, [CrossRef] [PubMed]. CR - [6] D. N. Louis, A. Perry, G. Reifenberger, et al. “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary”, Acta Neuropathol, vol. 131, pp. 803–820, May 2016. [CrossRef] [PubMed]. CR - [7] V. Kotu & B. Deshpande, “Data science: concepts and practice”, Morgan Kaufmann, 2nd ed. 2019. CR - [8] B. Janeczko & G. Srivastava, “”The use of deep learning in image analysis for the study of oncology”, In Internet of Multimedia Things (IoMT), pp. 133-150, 2022, Academic Press, [Online]Available:https://www.sciencedirect.com/science/article/abs/pii/B9780323858458000113 CR - [9] R. Polikar, “Ensemble Learning”, Ensemble machine learning: Methods and applications, Springer, New York, NY. pp. 1-34, Jan. 2012, https://doi.org/10.1007/978-1-4419-9326-7_1 CR - [10] O. Sagi & L. Rokach, “Ensemble learning: A survey”, WIREs Data Mining and Knowledge Discovery, vol. 8, no. 4, Jul. 2018, 8:e1249, DOI: 10.1002/widm.124. CR - [11] E. Aslan, “Classification of Brain Tumor from MRI Images with LSTM-CNN Hybrid Model”, Adıyaman University Journal of Engineering Sciences, vol. 11, no. 22, pp. 63–81, 2024, doi: 10.54365/adyumbd.1391157. CR - [12] Brain tumor. (2019, April 27). Date of Access: 15.12. 2024, from https://www.mayoclinic.org/diseases- conditions/brain- tumor/symptoms-causes/syc-20350084. CR - [13] MD. Charles Patrick Davis, “Cancer Causes, Types, Treatment, Symptoms & Signs”, MedicineNet, MedicineNet, Date of Access: 20.07.2023, from https://www.medicinenet.com/cancer/article.htm CR - [14] S. A. Swapnil & V. S. Girish (2020, March). Image Mining Methodology for Detection of Brain Tumor: A Review. Presented at ICCMC Annual Meeting. IEEE. [Online].Available:https://ieeexplore.ieee.org/abstract/document/9076409 CR - [15] U. A. Dere. (2017). What is a brain tumor? Date of Access: 09.05.2024, from https://ankara.baskenthastaneleri.com/magazine/sayi30/files/assets/common/downloads/publication.pdf CR - [16] D. R. Johnson, J. B. Guerin, C. Giannini, J. M. Morris, L . J. Eckel & T. J. Kaufmann, “2016 updates to the WHO brain tumor classification system: what the radiologist needs to know”, RadioGraphics, vol. 37, no. 7, pp. 2164-2180, Oct. 2017, DOI: 10.1148/rg.2017170037 CR - [17] Acıbadem Web and Editorial Board (2019). Date of Access: 24.06.2024, from http://acibadem.com.tr/ilgi-alani/gliomlar/ CR - [18] Y. Aras (2022). What are the types of brain tumors? Date of Access: 24.10.2024, from https://kolanhastanesi.com.tr/saglik-rehberi/beyin-tumoru-turleri-nelerdir CR - [19] Braın and Nerve Surgery (Neurosurgery) (2023). What are brain tumor symptoms? What are the treatment methods? Date of Access: 25.07.2024, from https://www.medicalpark.com.tr/beyin-tumorleri/hg-1539 CR - [20] L. Sprincl, J. Vozenílek, J. Vedralová, et al, “Use of a computer program in the diagnosis of brain tumors”, Cesk Patol, vol. 21, no. 4, pp. 218-222, Nov. 1985, PMID: 3905026 CR - [21] E. Aslan, M. A. Arserim & A. Uçar, “Development of Push-Recovery control system for humanoid robots using deep reinforcement learning”, Ain Shams Engineering Journal, vol. 14, no. 10, 102167, Oct. 2023, DOI: 10.1016/j.asej.2023.102167. CR - [22] A. Geçmez & Ç. Gençer (2021, June). Wind Energy Production Estimation with ANN and ANFIS, Presented at icSmartGrid, Setubal, Portugal, pp. 167-173. [Online]. Available:https://ieeexplore.ieee.org/abstract/document/9551254 CR - [23] E. H. Houssein, M. M. Emam & A. A. Ali, “An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm”, Neural Computing and Applications, vol. 34, no. 20, pp. 18015-18033, Jun. 2022, DOI:10.1007/s00521-022-07445-5. CR - [24] N. Ganatra & A. Patel, “A comprehensive study of deep learning architectures, applications and tools”, Int. j. comput. sci. eng, vol. 6, no. 12, pp. 701-705, Dec. 2018, DOI: 10.26438/ijcse/v6i12.701705. CR - [25] F. Doğan & İ. Türkoğlu, “A compilation of deep learning models and application areas”, Dicle University Engineering Faculty Journal of Engineering, vol. 10, no. 2, pp. 409-445, 2019. CR - [26] K. A. Kumar, A. Y. Prasad & J. Metan, “A hybrid deep CNN-Cov-19-Res-Net Transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing”, Biomedical signal processing and control, vol. 76, 103631, Jul. 2022, DOI: 10.1016/j.bspc.2022.103631 CR - [27] Y. Bhanothu, A. Kamalakannan & G. Rajamanickam (2020, March). Detection and classification of brain tumor in MRI images using deep convolutional network, Presented at 6th ICACCS, Coimbatore, India, pp. 248-252, IEEE.[Online].Available: https://ieeexplore.ieee.org/abstract/document/9074375 CR - [28] A. Çinar & M. Yildirim, “Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture”, Medical hypotheses, vol. 139, 109684, Jun. 2020, DOI: 10.1016/j.mehy.2020.109684 CR - [29] R. Vankdothu, MA. Hameed & H. Fatima, “A brain tumor identification and classification using deep learning based on CNN-LSTM method”, Computers and electrical engineering, vol. 101, 107960, Jul. 2022, DOI:10.1016/j.compeleceng.2022.107960 CR - [30] S. Patil. & D. Kirange, “Community of Deep Learning Models for Brain Tumor Detection”, Procedia computer science, vol. 218, pp. 2468-2479, 2023. CR - [31] M. Aslan, “Deep learning based automatic brain tumor detection”, Fırat university journal of engineering sciences, vol. 34, no.1, pp. 399-407, Mar. 2022, DOI:10.35234/fumbd.1039825 CR - [32] S. Deepak & P. M. Ameer, “Brain tumor classification using deep CNN features via transfer learning”, Computers in biology and medicine, vol. 111, 103345, Aug. 2019, DOI:10.1016/j.compbiomed.2019.103345 CR - [33] M. I. Nazir, A. Akter, M. A. H. Wadud ve M. A. Uddin, "Utilizing customized CNN for brain tumor prediction with explainable AI," Heliyon, cilt. 10, sayı. 20, 2024. CR - [34] E. Goceri, "An efficient network with CNN and transformer blocks for glioma grading and brain tumor classification from MRIs," Expert Systems with Applications, cilt. 268, s. 126290, 2025. CR - [35] Math & Physics with Gus (2023). CNN Brain Tumor Classification. Date of Access:12.08.2023, from https://www.kaggle.com/code/guslovesmath/cnn-brain-tumor-classification-99-accuracy CR - [36] S. Bhuvaji (2020). Brain Tumor Classification (MRI). Date of Access:12.08.2023, from https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri CR - [37] E. Aslan & Y. Özüpak, “Detection of road extraction from satellite images with deep learning method”, Cluster Comput, vol. 28, no. 72, 2025, DOI:10.1007/s10586-024-04880-y CR - [38] S. Deepak & P. M. Ameer, “Automated categorization of brain tumor from mri using cnn features and svm”, Journal of ambient intelligence and humanized computing, vol. 12, pp. 8357-8369, Oct. 2021, DOI:10.1007/s12652-020-02568-w CR - [39] M. M. Badža & M. Č. Barjaktarović, “Classification of brain tumors from MRI images using a convolutional neural network”, Applied sciences, vol. 10, no.6, 1999, Mar. 2020, DOI:10.3390/app10061999 CR - [40] N. Abiwinanda, M. Hanif, S. T. Hesaputra, A. Handayani & T. R. Mengko (2018, June). Brain tumor classification using convolutional neural network, Presented at WCMPBE, Prague, Czech Republic, vol. 1, pp. 183-189, Springer Singapore. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-10-9035-6_33 CR - [41] H. H. Sultan, N. M. Salem & W. Al-Atabany, “Multi-classification of brain tumor images using deep neural network”, IEEE access, vol. 7, pp.69215-69225, May. 2019, DOI: 10.1109/ACCESS.2019.2919122 CR - [42] W. Ayadi, W. Elhamzi, I. Charfi & M. Atri, “Deep CNN for brain tumor classification”, Neural processing letters, vol. 53, pp. 671-700, Jan. 2021, DOI: 10.1007/s11063-020-10398-2 CR - [43] R. L. Kumar, J. Kakarla, B. V. Isunuri & M. Singh, “Multi-class brain tumor classification using residual network and global average pooling”, Multimedia tools and applications, vol. 80, pp. 13429-13438, Jan. 2021, DOI: 10.1007/s11042-020-10335-4 UR - https://doi.org/10.24012/dumf.1622271 L1 - https://dergipark.org.tr/tr/download/article-file/4531165 ER -