TY - JOUR T1 - A comprehensive study on determination of chemical composition of kumquat (Fortunella margarita L.) fruits TT - Kamkat (Fortunella margarita L.) meyvelerinin kimyasal bileşiminin belirlenmesi üzerine kapsamlı bir çalışma AU - Karakaya, Hüseyin AU - Bilenler, Tuğça AU - Öztürk, Fatma Sezer AU - Yaşar, Kübra PY - 2025 DA - August Y2 - 2025 DO - 10.37908/mkutbd.1625174 JF - Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi JO - MKU. Tar. Bil. Derg. PB - Hatay Mustafa Kemal Üniversitesi WT - DergiPark SN - 2667-7733 SP - 595 EP - 610 VL - 30 IS - 2 LA - en AB - Kumquat (Fortunella margarita L.) is a group of small-sized fruits with a typical aroma. In this study, it was aimed to determine the chemical composition of kumquat fruit including β-carotene, sorbitol, sugars, organic acids and phenolics. According to High-Performance Liquid Chromatography (HPLC) analysis, β-carotene content was found to be 0.43 mg 100 g-1 in fresh fruit. Sucrose accounted for more than half of the sugar content with a ratio of 3.19 mg 100 g-1. Citric acid was the most abundant organic acid in kumquat. A total of 14 phenolic compounds were investigated to reveal the phenolic composition of F. margarita and the results showed that it had a great diversity of phenolics. Gallic acid (277.3 mg 100 g-1), procyanidin B1 (119.3 mg 100 g-1) and epigallocatechin (89.3 mg 100 g-1) were the major phenolic compounds identified in the whole fruit. As the fruit was eaten without peeling, the essential oil of the peel (PEO) was also analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). It was determined that the PEO was a mixture of monoterpenes, sesquiterpenes, oxygenated terpenic compounds, esters and aldehydes. Limonene (83.8%), a monoterpenic substance, was the major aromatic component in the PEO, followed by β-myrcene (6.7%), germacrene D (3.3%) and α-pinene (1.8%). This work has shown that kumquat fruit is a natural source for bioactive compounds. KW - β-carotene KW - Essential oil KW - Kumquat KW - Phenolic compounds N2 - Kamkat (Fortunella margarita L.) tipik aromaya sahip küçük boyutlu bir meyve grubudur. Bu çalışmada, kamkat meyvesinin β-karoten, sorbitol, şekerler, organik asitler ve fenolikleri içeren kimyasal bileşiminin belirlenmesi amaçlanmıştır. Yüksek Performanslı Sıvı Kromatografisi (HPLC) analizine göre, taze meyvede β-karoten içeriği 0.43 mg 100 g-1 olarak bulunmuştur. Sakkaroz, 3,19 mg 100 g-1 oranı ile şeker içeriğinin yarısından fazlasını oluşturmuştur. Sitrik asit kamkatta en bol bulunan organik asit olmuştur. F. margarita'nın fenolik bileşimini ortaya çıkarmak için toplam 14 fenolik bileşik araştırılmış ve sonuçlar meyvenin büyük bir fenolik çeşitliliğine sahip olduğunu göstermiştir. Gallik asit (277.3 mg 100 g-1), prosiyanidin B1 (119.3 mg 100 g-1) ve epigallokateşin (89.3 mg 100 g-1) bütün meyvede tespit edilen başlıca fenolik bileşiklerdir. Meyve soyulmadan yenildiği için, kabuk uçucu yağı (PEO) da Gaz Kromatografisi-Kütle Spektrometresi'nde (GC-MS) analize tabi tutulmuştur. PEO’nun monoterpenler, seskiterpenler, oksijenli terpenik bileşikler, esterler ve aldehitlerin bir karışımı olduğu belirlenmiştir. Monoterpenik bir madde olan limonen (%83.8) PEO’daki başlıca aromatik bileşen olup, bunu β-mirsen (%6.7), germakren D (%3.3) ve α-pinen (%1.8) takip etmektedir. Bu çalışma, kamkat meyvesinin biyoaktif bileşikler için doğal bir kaynak olduğunu göstermiştir. CR - Abd-Elwahab, S.M., El-Tanbouly, N.D., Moussa, M.Y., Abdel-Monem, A.R., & Fayek, N.M. (2016). Antimicrobial and antiradical potential of four agro-waste Citrus peels cultivars. Journal of Essential Oil Bearing Plants, 19 (8), 1932-1942. https://doi.org/10.1080/0972060X.2016.1232609 CR - Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, Illinois. pp. 804. CR - Agócs, A., Nagy, V., Szabó, Z., Márk, L., Ohmacht, R., & Deli, J. (2007). Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovative Food Science & Emerging Technologies, 8 (3), 390-394. https://doi.org/10.1016/j.ifset.2007.03.012 CR - Al-Saman, M.A., Abdella, A., Mazrou, K.E., Tayel, A.A., & Irmak, S. (2019). Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). Journal of Food Measurement and Characterization, 13, 3221-3229. https://doi.org/10.1007/s11694-019-00244-y CR - Asencio, A.D., Serrano, M., Garcia-Martinez, S., & Pretel, M.T. (2018). Organic acids, sugars, antioxidant activity, sensorial and other fruit characteristics of nine traditional Spanish Citrus fruits. European Food Research and Technology, 244, 1497-1508. https://doi.org/10.1007/s00217-018-3064-x CR - Babazadeh, D.B., & Jaimand, K. (2019). Physicochemical characteristics of kumquat (Fortunella margarita) on Citrus rootstocks. Journal of Medicinal Plants and By-products, 8 (2), 105-114. https://doi.org/10.22092/jmpb.2019.120488 CR - Berk, Z. (2016). Nutritional and health-promoting aspects of citrus consumption. In: Z. Berk (Ed), Citrus fruit processing. Academic Press, London. pp. 261–279. CR - Campbell, O.E., Merwin, I.A., & Padilla-Zakour, O.I. (2013). Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of Northeast USA apricot (Prunus armeniaca) varieties. Journal of Agricultural and Food Chemistry, 61 (51), 12700-12710. https://doi.org/10.1021/jf403644r CR - Cano-Lamadrid, M., Lipan, L., Hernandez, F., Martinez, J.J., Legua, P., Carbonell-Barrachina, A.A., & Melgarejo, P. (2018). Quality parameters, volatile composition, and sensory profiles of highly endangered Spanish citrus fruits. Journal of Food Quality, 1, 3475461. https://doi.org/10.1155/2018/3475461 CR - Carr, A.C., & Lykkesfeldt, J. (2021). Discrepancies in global vitamin C recommendations: A review of RDA criteria and underlying health perspectives. Critical Reviews in Food Science and Nutrition, 61 (5), 742-755. https://doi.org/10.1080/10408398.2020.1744513 CR - Chang, Y.C., & Lin, T.C. (2020). Temperature effects on fruit development and quality performance of nagami kumquat (Fortunella margarita [Lour.] Swingle). The Horticulture Journal, 89 (4), 35-358. https://doi.org/10.2503/hortj.UTD-120 CR - Chen, Y., Pan, H., Hao, S., Pan, D., Wang, G., & Yu, W. (2021). Evaluation of phenolic composition and antioxidant properties of different varieties of Chinese citrus. Food Chemistry, 364, 130413. https://doi.org/10.1016/j.foodchem.2021.130413 CR - Çakmakçı, S., Topdaş, E.F., Çakır, Y., & Kalın, P. (2016). Functionality of kumquat (Fortunella margarita) in the production of fruity ice cream. Journal of the Science of Food and Agriculture, 96 (5), 1451-1458. https://doi.org/10.1002/jsfa.7241 CR - Coelho, E.M., da Silva Padilha, C.V., Miskinis, G.A., de Sá, A.G.B., Pereira, G.E., de Azevêdo, L.C., & dos Santos Lima, M. (2018). Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. Journal of Food Composition and Analysis, 66, 160-167. https://doi.org/10.1016/j.jfca.2017.12.017 CR - da Silva Padilha, C.V., Miskinis, G.A., de Souza, M.E.A.O., Pereira, G.E., de Oliveira, D., Bordignon-Luiz, M.T., & dos Santos Lima, M. (2017). Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chemistry, 228, 106-115. https://doi.org/10.1016/j.foodchem.2017.01.137 CR - Fitsiou, E., Mitropoulou, G., Spyridopoulou, K., Tiptiri-Kourpeti, A., Vamvakias, M., Bardouki, H., Panayiotidis, M.I., Galanis, A., Kourkoutas, Y., Chlichlia, K., & Pappa, A. (2016). Phytochemical profile and evaluation of the biological activities of essential oils derived from the Greek aromatic plant species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules, 21 (8), 1069. https://doi.org/10.3390/molecules21081069 CR - Güney, M., Oz, A.T., & Kafkas, E. (2015). Comparison of lipids, fatty acids and volatile compounds of various kumquat species using HS/GC/MS/FID techniques. Journal of the Science of Food and Agriculture, 95 (6), 1268-1273. https://doi.org/10.1002/jsfa.6817 CR - ICH (2005). Validation of analytical procedures: Text and methodology. ICH Tripartite guideline. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Chicago, USA. https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf CR - Jayaprakasha, G.K., Murthy, K.C., Etlinger, M., Mantur, S.M., & Patil, B.S. (2012). Radical scavenging capacities and inhibition of human prostate (LNCaP) cell proliferation by Fortunella margarita. Food Chemistry, 131 (1), 184-191. https://doi.org/10.1016/j.foodchem.2011.08.058 CR - Karabulut, I., Bilenler, T., Sislioglu, K., Gokbulut, I., Ozdemir, I.S., Seyhan, F., & Ozturk, K. (2018). Chemical composition of apricots affected by fruit size and drying methods. Drying Technology, 36 (16), 1937-1948. https://doi.org/10.1080/07373937.2018.1427762 CR - Karahuseyin, S., & Nenni, M. (2023). Kumquat. Purewall, S. S., Bangar, S. P., & Kaur, P. (Eds.), Recent advances in citrus fruits (pp. 283-318). Springer, Switzerland. CR - Karakaya, H., Ozturk, F.S., Koc, T.B., & Yasar, K. (2022). Chemical composition and antimicrobial activity of pummelo (Citrus maxima) essential oil derived from fruit peel. Journal of Essential Oil Bearing Plants, 25 (3), 524-535. https://doi.org/10.1080/0972060X.2022.2100229 CR - Küçükbay, F., Büyükkormaz, Ç., Özek, G., & Özek, T. (2025). Chemical composition of essential oils from Citrus fortunella (kumquat) and its mutants. Food Processing: Techniques and Technology, 55 (1), 29-44. https://doi.org/10.21603/2074-9414-2025-1-2553 CR - Lakache, Z., Hacib, H., Aliboudhar, H., Toumi, M., Mahdid, M., Lamrani, N., Tounsi, H., & Kameli, A. (2022). Chemical composition, antidiabetic, anti-inflammatory, antioxidant and toxicity activities, of the essential oil of Fortunella margarita peels. Journal of Biological Research-Bollettino della Società Italiana di Biologia Sperimentale, 95, 10641. https://doi.org/10.4081/jbr.2022.10641 CR - Li, X., Meenu, M., & Xu, B. (2023). Recent development in bioactive compounds and health benefits of kumquat fruits. Food Reviews International, 39 (7), 4312-4332. https://doi.org/10.1080/87559129.2021.2023818 CR - Liao, L., Dong, T., Qiu, X., Rong, Y., Wang, Z., & Zhu, J. (2019). Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit. PLoS One, 14 (10), e0223356. https://doi.org/10.1371/journal.pone.0223356 CR - Lou, S.N., Lai, Y.C., Hsu, Y.S., & Ho, C.T. (2016). Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chemistry, 197, 1-6. https://doi.org/10.1016/j.foodchem.2015.10.096 CR - Lou, S.N., & Ho, C.T. (2017). Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin. Journal of Food and Drug Analysis, 25 (1), 162-175. https://doi.org/10.1016/j.jfda.2016.10.024 CR - Massaro, A., Calvi, P., Restivo, I., Giardina, M., Mulè, F., Tesoriere, L., Amato, A., Nuzzo, D., Picone, P., Terzo, S., & Allegra, M. (2025). Kumquat fruit administration counteracts dysmetabolism-related neurodegeneration and the associated brain insulin resistance in the high-fat diet-fed mice. International Journal of Molecular Sciences, 26 (7), 3077. https://doi.org/10.3390/ijms26073077 CR - Natividade, M.M.P., Correa, L.C., de Souza, S.V.C., Pereira, G.E., & de Oliveira Lima, L.C. (2013). Simultaneous analysis of 25 phenolic compounds in grape juice for HPLC: Method validation and characterization of São Francisco Valley samples. Microchemical Journal, 110, 665-674. http://doi.org/10.1016/j.microc.2013.08.010 CR - Palma, A., & D’Aquino, S. (2018). Kumquat–Fortunella japonica. In: S. Rodrigues, E. de Oliveira Silva and E. S. de Brito (Eds), Exotic fruits reference guide. Academic Press, London. pp. 271-278. CR - Pawelczyk, A., Zwawiak, J., & Zaprutko, L. (2023). Kumquat fruits as an important source of food ingredients and utility compounds. Food Reviews International, 39 (2), 875-895. https://doi.org/10.1080/87559129.2021.1928179 CR - Pena-Vazquez, G.I., Dominguez-Fernandez, M.T., Camacho-Zamora, B.D., Hernandez-Salazar, M., Urias-Orona, V., De Pena, M.P., & de la Garza, A.L. (2022). In vitro simulated gastrointestinal digestion impacts bioaccessibility and bioactivity of Sweet orange (Citrus sinensis) phenolic compounds. Journal of Functional Foods, 88, 104891. https://doi.org/10.1016/j.jff.2021.104891 CR - Perez, S.M. (2022). Profile physical and phenolic-chemical of kumquat influenced by the environment analyzed in fresh. Journal of Ecological Engineering, 23 (2), 196-203. https://doi.org/10.12911/22998993/144474 CR - Sawamura, M. (2010). Citrus Essential Oils: Flavor and Fragrance. John Wiley and Sons, New Jersey. pp. 398. CR - Scherer, R., Rybka, A.C.P., Ballus, C.A., Meinhart, A.D., Teixeira Filho, J., & Godoy, H.T. (2012). Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chemistry, 135 (1), 150-154. http://doi.org/10.1016/j.foodchem.2012.03.111 CR - Schirra, M., Palma, A., D’Aquino, S., Angioni, A., Minello, E.V., Melis, M., & Cabras, P. (2008). Influence of postharvest hot water treatment on nutritional and functional properties of kumquat (Fortunella japonica Lour. Swingle Cv. Ovale) fruit. Journal of Agricultural and Food Chemistry 56 (2), 455-460. https://doi.org/10.1021/jf0714160 CR - Shalaby, A.S., Eid, H.H., El‐Shiekh, R.A., Youssef, F.S., Al‐Karmalawy, A.A., Farag, N.A., Sleem, A.A., Morsy, F.A., Ibrahim, K.M., & Tadros, S.H. (2023). A comparative GC/MS analysis of Citrus essential oils: Unveiling the potential benefits of herb‐drug interactions in preventing paracetamol‐induced hepatotoxicity. Chemistry & Biodiversity, 20 (9), e202300778. https://doi.org/10.1002/cbdv.202300778 CR - Shanmugavelan, P., Kim, S.Y., Kim, J.B., Kim, H.W., Cho, S.M., Kim, S.N., Kim, S.Y., Cho, Y.S., & Kim, H.R. (2013). Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydrate Research, 380, 112-117. https://doi.org/10.1016/j.carres.2013.06.024 CR - Sicari, V., & Poiana, M. (2017). Comparison of the volatile component of the essential oil of kumquat (Fortunella margarita swingle) extracted by supercritical carbon dioxide, hydrodistillation and conventional solvent extraction. Journal of Essential Oil Bearing Plants, 20 (1), 87-94. https://doi.org/10.1080/0972060X.2017.1282841 CR - Souza, C.S. e., Anunciação, P.C., Della Lucia, C.M., Rodrigues das Dôres, R.G., de Miranda Milagres, R.C.R., & Pinheiro Sant’Ana, H.M. (2021). Kumquat (Fortunella margarita): A good alternative for the ingestion of nutrients and bioactive compounds. Proceedings, 70, 105. https://doi.org/10.3390/foods_2020-07590 CR - Sturm, K., Koron, D., & Stampar, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry, 83 (3), 417-422. https://doi.org/10.1016/S0308-8146(03)00124-9 CR - Sun, Y., Cheng, H., Ma, Y., & Ye, Q. (2018). Carotenoids in Citrus. In: X. Ye (Ed), Phytochemicals in citrus: Applications in functional foods. CRC Press, Boca Raton, Florida. pp. 211-235. CR - Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120 (2), 599-606. http://doi.org/10.1016/j.foodchem.2009.10.030 CR - Tan, S., Li, M., Ding, X., Fan, S., Guo, L., Gu, M., Zhang, Y., Feng, L., Jiang, D., Li, Y., Xi, W., Huang, C., & Zhou, Z. (2014). Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice. PLoS One, 9 (4), e93510. https://doi.org/10.1371/journal.pone.0093510 CR - Tan, S., Zhao, X., Yang, Y., Ke, Z., Zhou, Z. (2016). Chemical profiling using Uplc Q‐Tof/Ms and antioxidant activities of Fortunella Fruits. Journal of Food Science, 81 (7), 1646-1653. https://doi.org/10.1111/1750-3841.13352 Tekeli, A., Çelik, L., & Kutlu, H.R. (2007). Plant extracts; a new rumen moderator in ruminant diets. Journal of Tekirdag Agricultural Faculty, 4 (1), 71-79. CR - Ünal, N., Saridaş, M.A., Ağçam, E., Akyıldız, A., & Kargı, S.P. (2023). Effects of harvest date on plant growth parameters and fruit phytochemical contents in different cultivars of chokeberry. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51 (3), 13243-13243. https://doi.org/10.15835/nbha51313243 CR - Wallace W.E. (2021). Mass Spectra & Retention Indices. In: Linstrom P.J., Mallard W.G. (eds), NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Maryland. Retrieved from https://webbook.nist.gov/chemistry/name-ser/ by December 16, 2024. CR - Wang, Y.C., Chuang, Y.C., & Ku, Y.H. (2007). Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chemistry, 102 (4), 1163-1171. https://doi.org/10.1016/j.foodchem.2006.06.057 CR - Wang, Y.W., Zeng, W.C., Xu, P.Y., Lan, Y.J., Zhu, R.X., Zhong, K., Huang, Y.N., & Gao, H. (2012). Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. International Journal of Molecular Sciences, 13 (3), 3382-3393. https://doi.org/10.3390/ijms13033382 CR - Wei, Q.J., Ma, Q.L., Zhou, G.F., Liu, X., Ma, Z.Z., & Gu, Q.Q. (2021). Identification of genes associated with soluble sugar and organic acid accumulation in ‘Huapi’kumquat (Fortunella crassifolia Swingle) via transcriptome analysis. Journal of the Science of Food and Agriculture, 101 (10), 4321-4331. https://doi.org/10.1002/jsfa.11072 CR - Yu, F., Wan, N., Zheng, Q., Li, Y., Yang, M., & Wu, Z. (2021). Effects of ultrasound and microwave pretreatments on hydrodistillation extraction of essential oils from kumquat peel. Food Science & Nutrition, 9 (5), 2372-2380. https://doi.org/10.1002/fsn3.2073 CR - Zeng, H., Zhang, Y., Jian, Y., Tian, Y., Miao, S., & Zheng, B. (2015). Rheological properties, molecular distribution, and microstructure of Fortunella margarita (Lour.) swingle polysaccharides. Journal of Food Science, 80 (4), 742-749. https://doi.org/10.1111/1750-3841.12791 CR - Zeng, Z., Mao, Z., Liu, Y., Chen, M., Xu, Z., Yan, X., Xu, G., Zhu, W., Liu, H., & Ji, Y. (2023). Functional substances and therapeutic potential of kumquat essential oil. Trends in Food Science & Technology, 138, 272-283. https://doi.org/10.1016/j.tifs.2023.06.003 CR - Zhang, B., Zhang, Y., Li, H., Deng, Z., & Tsao, R. (2020). A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science & Technology, 105, 347-362. https://doi.org/10.1016/j.tifs.2020.09.029 CR - Zhou, Y., He, W., Zheng, W., Tan, Q., Xie, Z., Zheng, C., & Hu, C. (2018). Fruit sugar and organic acid were significantly related to fruit Mg of six citrus cultivars. Food Chemistry, 259, 278-285. https://doi.org/10.1016/j.foodchem.2018.03.102 CR - Ziogas, V., Ganos, C., Graikou, K., Cheilari, A., & Chinou, I. (2024). Chemical analyses of volatiles from kumquat species grown in Greece—A study of antimicrobial activity. Horticulturae, 10 (2), 131. https://doi.org/10.3390/horticulturae10020131 UR - https://doi.org/10.37908/mkutbd.1625174 L1 - https://dergipark.org.tr/tr/download/article-file/4544236 ER -