TY - JOUR T1 - Bitki Hastalıklarının Erken Teşhisinde Vis-NIR Spektroskopi Yöntemi TT - Vis-NIR Spectroscopy Method for Early Diagnosis of Plant Diseases AU - Bilgili, Ayşin AU - Bilgili, Ali Volkan PY - 2025 DA - August Y2 - 2025 JF - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - YYU JINAS PB - Van Yüzüncü Yıl Üniversitesi WT - DergiPark SN - 1300-5413 SP - 848 EP - 859 VL - 30 IS - 2 LA - tr AB - Son yıllarda uzaktan algılama tekniklerinin geliştirilmesi, bitki koruma uzmanlarına ürünlerin bitki sağlığı durumunu değerlendirmek için yeni mekanizmalar sunmuştur. Görülebilir ve yakın kızılötesi yansıma spektroskopisi (Vis-NIR) gibi hiperspektral sensörlerden elde edilen anlamca zengin veriler, bitki koruma önlemlerinin zamanında ve rasyonel bir şekilde uygulanmasına olanak tanır. Bu spektral veriler, kimyasal parametreler hakkında spektral absorpsiyon ve karakteristikleri aracılığıyla bilgi sağlayarak, hastalık enfeksiyonu veya strese bağlı anormal durumların erken tespitine yardımcı olur. Özellikle belirtiler ortaya çıkmadan önce bitki hastalıklarının tespiti, etkili stratejilerin uygulanması ve tarımda büyük kayıpların önlenmesi açısından büyük önem taşır. Bu derleme çalışması, görünür ve yakın kızılötesi (Vis-NIR) spektroskopi tekniğinin erken bitki hastalığı tespitindeki potansiyelini değerlendirmektedir. Vis-NIR spektroskopisi, tarımsal ürünlerin geniş bir yelpazesindeki çeşitli parametrelerin invazif olmayan analizi ve tanımlanması için kanıtlanmış bir ölçüm teknolojisidir. Bu yöntemin, bitkilerde sağlıklı ve hastalıklı olma durumlarını ayırt edebilme yeteneği kanıtlanmıştır. Bu nedenle bilim insanları, belirtiler gözle görülmeden önce hastalıkların veya stresin erken tespiti için bu yaklaşımı uygulamaya çalışmaktadır. KW - Bitki hastalıkları KW - Erken tanı KW - Hassas tarım KW - Spektroskopi KW - Vis-NIR KW - Yeni teşhis methodu N2 - In recent years, the development of remote sensing techniques has provided plant protection specialists with new mechanisms to assess the plant health status of crops. Meaning-rich data obtained from hyperspectral sensors, such as visible and near-infrared reflectance spectroscopy (Vis-NIR), allows for the timely and rational implementation of plant protection measures. These spectral data provide information about chemical parameters through absorption patterns and properties, aiding in the early detection of abnormal conditions caused by disease infection or stress. Particularly, the detection of plant diseases before symptoms appear is crucial for implementing effective strategies and preventing significant losses in agriculture. This review study evaluates the potential of the visible and near-infrared (Vis-NIR) spectroscopy technique in early plant disease detection. Vis-NIR spectroscopy is a proven measurement technology for the non-invasive analysis and identification of various parameters across a wide range of agricultural products. This method has been shown to distinguish between healthy and unhealthy states in plants. Therefore, scientists are working to apply this approach for the early detection of diseases or stress before symptoms become visible. CR - Abdulridha, J., Ehsani, R., & De Castro, A. (2016). Detection and differentiation between laurel wilt disease, Phytophthora Disease, and salinity damage using a hyperspectral sensing technique. Agriculture, 6(4), 56. https://doi.org/10.3390/agriculture6040056 CR - Abdulridha, J., Ampatzidis, Y., Roberts, P., & Kakarla, S.C. (2020). Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence, Biosystems Engineering, 197, 135-148. https://doi.org/10.1016/j.biosystemseng.2020.07.001 CR - Başayiğit, L., & Dedeoğlu, M. (2012). Elma ağaçlarında çinko noksanlığının görünür yakın kızılötesi (VNIR) spektroskopik yöntemle belirlenmesi. Tarım Bilimleri Araştırma Dergisi, 2, 64-67. CR - Bilgili, A.V., Karadağ, K., Tenekeci, M. E., & Bilgili, A. (2018). Determination of plant diseases with combined use of spectral reflectance and machine learning techniques; a case study for Fusarium spp. on pepper. In: Baspinar H (Eds.) International VII. Plant Protection Congress Full Text Book. Turkey, (pp 115-121). MOTTO Press. https://motto.tc/siteler/www.bitkikoruma2018.com/gorseller/files/Tam-metin-bildiri-kitabi-03.12.18.pdf CR - Bilgili, A., Bilgili, A. V., Tenekeci, M. E., & Karadağ, K. (2023). Spectral characterization and classification of two different crown root rot and vascular wilt diseases (fusarium oxysporum f.sp. radicis lycopersici and fusarium solani) in tomato plants using different machine learning algorithms. European Journal of Plant Pathology, 165, 271-286. https://doi.org/10.1007/s10658-022-02605-8 CR - Dedeoğlu, M., & Başayiğit, L. (2013). Kiraz ağaçlarında çinko noksanlığının spektral türev eğrileri ile belirlenebilirliği. International Journal of Agricultural and Natural Sciences, 6(1), 26–29. CR - Farber, C., Mahnke, M., Sanchez, L., & Kurouski, D. (2019). Advanced spectroscopic techniques for plant disease diagnostics. A review, TrAC Trends in Analytical Chemistry, 118, 43-49, https://doi.org/10.1016/j.trac.2019.05.022 CR - Giraldo-Betancourt, Velandia-Sanchez, E. A., Fischer, G., Gomez-Caro, S., & Martinez, L. J. (2020). Hyperspectral response of capre gooseberry (Physalis peruviana L.) plants inoculated with Fusarium oxysporum f.sp. physali for vascular wilt detection. Revista Colombiana De Ciencias Horticolas, 14, 301-313. Doi: https://doi.org/10.17584/rcch.2020v14i3.10938 CR - Heim, R. H. J., Wright, I. J., Chang, H. C., Camegie, A. J., Pegg, G. S., Lancaster, E. K., Falster, D. S., & Oldeland, J. (2018). Detecting myrtle rust (Austropuccinia psidii) on lemon myrtle trees using spectral signatures and machine learning. Plant Pathology, 67, 5, 1114-1121. https://doi.org/10.1111/ppa.12830 CR - Herrmann, I., Vosberg, S. K., Radindran, P., Singh, A., Chang, H. X., Chilvers, M. I., Conley, S. P., & Townsend, P. A. (2018). Leaf and canopy level detection of Fusarium virguliforme (sudden death syndrome) in soybean. Remote Sensing, 10(3), 426. https://doi.org/10.3390/rs10030426 CR - Karadag, K., Tenekeci, M. E., Taşaltın, R., & Bilgili, A. (2020). Detection of pepper Fusarium disease using machine learning algorithms based on spectral reflectance. Sustainable Computing: Informatics and Systems, 28, 100299. https://doi.org/10.1016/j.suscom.2019.01.001 CR - Khaled, A.Y., Abd Aziz, S., Bejo, S.K., Nawi, N.M., Seman, I.A. & Onwude, D.I. (2017). Early detection of diseases in plant tissue using spectroscopy – Applications and limitations, Applied Spectroscopy Reviews. https://doi.org/10.1080/05704928.2017.1352510 CR - Mahlein, K. A., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21-30. https://doi.org/10.1016/j.rse.2012.09.019 CR - Marin-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernandez, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88-99. https://doi.org/10.1016/j.sjbs.2019.05.007 CR - Ong, P., Jian, J., Li, X., Zou, C., Yin, J., & Ma, G. (2025). Sugarcane disease recognition through visible and near-infrared spectroscopy using deep learning assisted continuous wavelet transform-based spectrogram. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 324, 125001. https://doi.org/10.1016/j.saa.2024.125001 CR - Papazoglou, P., Navrozidis, I., Testempasis, S., Pantazi, X. E., Lagopodi, A., & Alexandridis, T. (2025). Early detection of bacterial canker in tomato plants using spectroscopy for smart agriculture applications. Biosystems Engineering, 251, 1-10. https://doi.org/10.1016/j.biosystemseng.2025.01.009 CR - Pithan, A. P., Ducati, R. J., Garrido, L. R., Arruda, D. C., Thum, A. B., & Hoff, R. (2021). Spectral characterization of fungal diseases downy mildew, powdery mildew, black-foot and petri disease on Vitis vinifera leaves. International Journal of Remote Sensing, 42(15), 5680-5697. https://doi.org/10.1080/01431161.2021.1929542 CR - Sivaganesh, C. H., Nidamanuri, R. R., Sharathchandra, R. G., & Narayanan, P. (2025). Hyperspectral detection and differentiation of various levels of Fusarium wilt in tomato crop using machine learning and statistical approaches. Journal of Crop Health, 77, 42. https://doi.org/10.1007/s10343-024-01100-w CR - Sterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156, 1063-1076. https://doi.org/10.1007/s10343-024-01100-w CR - Terentev, A., Dolzhenko, V., Fedotov, A., & Eremenko, D. (2022). Current state of hyperspectral remote sensing for early plant disease detection: A review. Sensors, 22, 757. https://doi.org/10.3390/s22030757 CR - Wan, L., Li, H., Li, C., Wang, A., Yang, Y., & Wang, P. (2022). Hyperspectral sensing of plant diseases: Principle and methods. Agronomy, 12(6), 1451. https://doi.org/10.3390/agronomy12061451 CR - Zhang, J. C., Pu, R. L., Wang, J. H., Huang, W. J., Yuan, L., & Luo, J. H. (2012). Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture, 85, 13-23. https://doi.org/10.1016/j.compag.2012.03.006 UR - https://dergipark.org.tr/tr/pub/yyufbed/issue//1626624 L1 - https://dergipark.org.tr/tr/download/article-file/4550766 ER -