TY - JOUR T1 - Serbest Piston Lineer Genişleticinin Performansı TT - Performance of a Valveless Free Piston Linear Expander AU - Kodakoglu, Furkan AU - Nuszkowski, John PY - 2025 DA - September Y2 - 2025 JF - Mühendis ve Makina PB - TMMOB Makina Mühendisleri Odası WT - DergiPark SN - 1300-3402 SP - 424 EP - 441 VL - 66 IS - 720 LA - tr AB - Bu çalışmanın amacı, bir Vanasız Serbest Piston Lineer Genleştirici’nin (SPLG) uzun süreli sürekli rejim çalışmasını elde etmektir. Giriş ve çıkış sıcaklıklarını, giriş ve çıkış basınçlarını, debiyi ve voltaj çıktısını ölçmek için bir deneysel test düzeneği kuruldu. Frekans, voltaj ortalama karekök değeri, hacimsel verim, elektrik-mekanik dönüşüm verimi, izantropik verim, tersinmezlik, gerçek genleştirici işi ve elektrik gücü gibi birçok çıktı parametrelerinin eğilimleri sunuldu. SPLG’nin bu ilk çalışmasında, 44 Hz maksimum genleştirici frekansı ve %21,5 maksimum izantropik verim elde edildi. KW - Vanasız Serbest Piston KW - Lineer Genleştirici KW - Deneysel Performans Analizi KW - Düşük Sıcaklıklı Isı Geri Kazanımı N2 - The objective of this work was to achieve long-term steady state operation of a Valveless Free-Piston Linear Expander (FPLE). An experimental test bench was developed to measure the inlet and outlet temperatures, inlet and outlet pressures, flow rate, and voltage output. The trends of several output parameters such as frequency, average root mean square (RMS) voltage, volumetric efficiency, electrical-mechanical conversion efficiency, isentropic efficiency, irreversibility, actual expander work, and electrical power were presented. This first iteration FPLE achieved a maximum expander frequency of 44 Hz and a maximum isentropic efficiency of 21.5%. CR - Aliahmadi M., Moosavi A., Sadrhosseini H. (2021). Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery, Energy Reports, 7, 300-313. Doi: https://doi.org/10.1016/j.egyr.2020.12.035 CR - Braimakis K. (2024). Mapping the waste heat recovery potential of CO2 intercooling compression via ORC. International Journal of Refrigeration, 159, 309-332. Doi: https://doi.org/10.1016/j.ijrefrig.2024.01.008 CR - Bonar H. (2002). U.S. Patent No. 6,484,498, Washington, DC: U.S. Patent and Trademark Office. CR - Fatigati F., Bartolomeo M.D., Cipollone R. (2024). Model-based optimisation of solar-assisted ORC-based power unit for domestic micro-cogeneration, Energy, 308, 132785. Doi: https://doi.org/10.1016/j.energy.2024.132785 CR - Glavatskaya Y., Podevin P., Lemort V., Shonda O., Descombes G. (2012). Reciprocating expander for an exhaust heat recovery Rankine Cycle for a passenger car application, Energies, 5(12), 1751-1765. Doi: https://doi.org/10.3390/en5061751 CR - Harada K.J. (2010). Development of a small scale scroll expander (Yüksek Lisans Tezi). Oregon State University, ABD. Erişim adresi: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/dj52w838c CR - Hu J., Li M., Zhao L., Xia B., Ma Y. (2015). Improvement and experimental research of CO2 two-rolling piston expander, Energy, 93, 2199-2207. Doi: https://doi.org/10.1016/j.energy.2015.10.097 CR - Imran M., Usman M., Park B. S., Lee D.H. (2016). Volumetric expanders for low grade heat and waste heat recovery applications, Renewable and Sustainable Energy Reviews, 57, 1090-1109. Doi: https://doi.org/10.1016/j.rser.2015.12.139 CR - International Energy Agency (2013). World Energy Outlook 2013, Paris, 708. Erişim adresi: https://iea.blob.core.windows.net/assets/a22dedb8-c2c3-448c-b104-051236618b38/WEO2013.pdf CR - Ismael M.A., Aziz A.R.A., Zainal E.Z., Mohammed S.E., Ayandotun W.B., Baharom M.B., Sallehudin M.S., Syakirin M., Anwerudin A.R.T., Masri M.M. (2021). Investigation on free-piston motion and power generation of a dual-piston air-driven expander linear generator, Energy Reports, 7, 2388-2397. Doi: https://doi.org/10.1016/j.egyr.2021.04.035 CR - Li X, Han S., Liu Z., He C., Zhang B., Chen Q. (2023). Design optimization and analysis of a multi-temperature partition and multi-configuration integrated organic Rankine cycle for low temperature heat recovery. Energy Conversion and Management, 293 (1), 117504. Doi: https://doi.org/10.1016/j.enconman.2023.117504 CR - Li G., Zhang H., Yang F., Song S., Chang Y., Yu F., Wang J., Yao, B. (2016). Preliminary development of a free piston expander–linear generator for small-scale Organic Rankine Cycle (ORC) waste heat recovery system, Energies, 9(4), 300. Doi: https://doi.org/10.3390/en9040300 CR - Mathias J. A., Johnston J.R., Cao J., Priedeman D.K., Christensen R.N. (2009). Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of an Organic Rankine Cycle, Journal of Energy Resources Technology, 131(1), 012201-1-012201-9. Doi: https://doi.org/10.1115/1.3066345 CR - Pambudi N.A., Wibowo S., Ranto, Saw L.H. (2021). Experimental investigation of Organic Rankine Cycle (ORC) for low temperature geothermal fluid: Effect of pump rotation and R-134 working fluid in scroll-expander, Energy Engineering, 118(5), 1565-1576. Doi: https://doi.org/10.32604/EE.2021.016642 CR - Peng B., Tong L., Guo C., Huo W. (2021). Experimental research and performance analysis of a free piston expander-linear generator coupled with a driving motor. Energy Reports, 7, 1349-1359. Doi: https://doi.org/10.1016/j.egyr.2021.02.066 CR - Peng B., Tong L., Yan D., Huo W. (2022). Experimental research and artificial neural network prediction of free piston expander-linear generator, Energy Reports, 8, 1966-1978. Doi: https://doi.org/10.1016/j.egyr.2022.01.021 CR - Permana D.I., Fagioli F., Lucia M.D., Rusirawan D., Farkas I. (2024). Energy, exergy, environmental and economy (4E) analysis of the existing of biomass-ORC plant with capacity 150 kWe: A case study, Energy Conversion and Management: X, 23, 100646. Doi: https://doi.org/10.1016/j.ecmx.2024.100646 CR - Preetham B., Weiss, L. (2016). Investigations of a new free piston expander engine cycle, Energy, 106, 535-545. Doi: https://doi.org/10.1016/j.energy.2016.03.082 CR - Smith I. K., Stosic N., Aldis C. A., Kovacevic A. (2000). Twin screw two-phase expanders in large chiller units, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~sj376/smith99a.htm CR - Smith I.K., Stosic N., Kovacevic A. (1999). Power recovery from low cost two-phase expanders, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~ra601/exp.pdf CR - Smith I.K., Stosic N., Kovacevic A. (2005). Screw expanders increase output and decrease the cost of geothermal binary power plant systems, London: City University London. Erişim adresi: https://www.staff.city.ac.uk/~ra601/grc2005.pdf CR - Stainchaouer A., Schifflechner C., Wieland C., Sakalis G., Spliethoff H. (2024). Evaluating long-term operational data of a very large crude carrier: Assessing the diesel engines waste heat potential for integrating ORC systems, Applied Thermal Engineering, 255, 123974. Doi: https://doi.org/10.1016/j.applthermaleng.2024.123974 CR - Tian Y., Zhang H., Li G., Hou X., Yu F., Yang F., Yang Y., Liu Y. (2017). Experimental study on free piston linear generator (FPLG) used for waste heat recovery of vehicle engine, Applied Thermal Engineering, 127, 184-193. Doi: https://doi.org/10.1016/j.applthermaleng.2017.08.031 CR - Wang Y., Chen L., Jia B., Roskilly A.P. (2017). Experimental study of the operation characteristics of an air-driven free-piston linear expander, Applied Energy, 195, 93-99. Doi: https://doi.org/10.1016/j.apenergy.2017.03.032 CR - Wang T., Zhou T., Feng Y., Zhang M., Zhu S., Yang H. (2024). Poly-generation system with waste heat of low-temperature flue gas in power plants based on organic Rankine cycle, Applied Thermal Engineering, 242, 122513. Doi: https://doi.org/10.1016/j.applthermaleng.2024.122513 CR - Wu Z., Zhang H., Liu Z., Hou X., Li J., Yang F., Zhang J. (2021). Experimental study on the performance of single-piston free-piston expander-linear generator, Energy, 221, 119724. Doi: https://doi.org/10.1016/j.energy.2020.119724 CR - Xu X., Zhang L., Zhang H., Ma J., Sambatmaryde K. (2024). Performance analysis of a novel small-scale integrated solar-ORC system for power and heating, Solar Energy, 274, 112605. Doi: https://doi.org/10.1016/j.solener.2024.112605 CR - Yagoub W., Doherty P., Riffat S. (2006). Solar energy-gas driven micro-CHP system for an office building, Applied Thermal Engineering, 26(14-15), 1604-1610. Doi: https://doi.org/10.1016/j.applthermaleng.2005.11.021 CR - Yan L., Liu J., Ying G., Zhang N. (2023). Simulation analysis of flue gas waste heat utilization retrofit based on ORC system, Energy Engineering, 120 (8), 1919-1938. Doi: https://doi.org/10.32604/ee.2023.027546 CR - Yang B., Peng X., He Z., Guo B., Xing Z. (2009). Experimental investigation on the internal working process of a CO2 rotary vane expander, Applied Thermal Engineering, 29(11-12), 2289-2296. Doi: https://doi.org/10.1016/j.applthermaleng.2008.11.023 CR - Zhang, B., Peng X., He Z., Xing Z., Shu P. (2017). Development of a double acting free piston expander for power recovery in transcritical CO2 cycle, Applied Thermal Engineering, 27(8-9), 1629-1636. Doi: https://doi.org/10.1016/j.applthermaleng.2006.05.034 UR - https://dergipark.org.tr/tr/pub/muhendismakina/issue//1628149 L1 - https://dergipark.org.tr/tr/download/article-file/4557426 ER -