TY - JOUR T1 - Determination of pomological, morphological, antioxidant activity, biochemical content and nutritional content values of kumquat (Citrus japonica) accessions using multivariate analysis methods TT - Kumkat (Citrus japonica) aksesyonlarının pomolojik, morfolojik, antioksidan aktivite, biyokimyasal içerik ve besin içeriği değerlerinin çok değişkenli analiz yöntemleri kullanılarak belirlenmesi AU - Tunç, Yazgan PY - 2025 DA - August Y2 - 2025 DO - 10.18185/erzifbed.1630129 JF - Erzincan University Journal of Science and Technology PB - Erzincan Binali Yıldırım Üniversitesi WT - DergiPark SN - 2149-4584 SP - 549 EP - 569 VL - 18 IS - 2 LA - en AB - This study aimed to determine the pomological, morphological, biochemical, antioxidant, and nutritional properties of 33 naturally grown kumquat (Citrus japonica) accessions using multivariate statistical methods. The analysis revealed significant variation among the accessions.Tukey’s multiple comparison test (p KW - Breeding KW - Genetic diversity KW - Multivariate analysis KW - Citrus japonica KW - Hatay N2 - Bu çalışma, doğal olarak yetişen 33 kumkat (Citrus japonica) aksesyonunun pomolojik, morfolojik, biyokimyasal, antioksidan ve besin içeriklerini çok değişkenli istatistiksel yöntemler kullanarak belirlemeyi amaçlamıştır. Analizler, aksesyonlar arasında önemli varyasyonlar olduğunu ortaya koymuştur.Tukey’nin çoklu karşılaştırma testi (p CR - [1] Aladekoyi, G., Omosulis, V., & Orungbemi, O. (2016). Evaluation of antimicrobial activity of oil extracted from three different citrus seeds (Citrus limon, Citrus aurantifolia and Citrus aurantium). Int. J. Sci. Res. Eng. Stud, 3(3), 16-20. CR - [2] Palma, A., & D’Aquino, S. (2018). Kumquat—Fortunella japonica. In Exotic Fruits (pp. 271-278). Academic Press. CR - [3] Li, X., Meenu, M., & Xu, B. (2023). Recent development in bioactive compounds and health benefits of kumquat fruits. Food Reviews International, 39(7), 4312-4332. CR - [4] Pawełczyk, A., Żwawiak, J., & Zaprutko, L. (2023). Kumquat fruits as an important source of food ingredients and utility compounds. Food Reviews International, 39(2), 875-895. CR - [5] Chang, Y. C., Chen, I. Z., Lin, L. H., & Chang, Y. S. (2014). Temperature effects on shoot growth and flowering of kumquat trees. Horticultural Science & Technology, 32(1), 1-9. CR - [6] Liu, X., Liu, B., Jiang, D., Zhu, S., Shen, W., Yu, X., Xue, Y., Liu, M., Feng, J., & Zhao, X. (2019). The accumulation and composition of essential oil in kumquat peel. Scientia Horticulturae, 252, 121-129. CR - [7] Ziogas, V., Ganos, C., Graikou, K., Cheilari, A., & Chinou, I. (2024). Chemical Analyses of Volatiles from Kumquat Species Grown in Greece—A Study of Antimicrobial Activity. Horticulturae, 10(2), 131. CR - [8] ImageJ. (2025). https://imagej.net/ij/download.html. (Access date 25 Jan 2025) CR - [9] Gül, E. N., Altuntaş, E., & Öcalan, O. N. (2021). Determination of physico-mechanical characteristics and bioactive properties of Nagami kumquat fruits. Turkish Journal of Agricultural and Natural Sciences, 8(4), 1064-1072. CR - [10] Pérez, S. M. (2022). Profile Physical and Phenolic-Chemical of Kumquat Influenced by the Environment Analyzed in Fresh. Journal of Ecological Engineering, 23(2), 196-203. CR - [11] Xu, H. X., & Chen, J. W. (2011). Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) fruits. Journal of the Science of Food and Agriculture, 91(6), 1057-1063. CR - [12] Özgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2 ‘-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. CR - [13] Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. CR - [14] Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555-559. CR - [15] AOAC. (2000). Official Methods of Analysis. Association of Official Analytical Chemists, Washington DC. CR - [16] Kalra, Y. P. (1998). Handbook of Reference Methods for Plant Analysis. CRC Press. CR - [17] Jones, J. B. (2001). Laboratory guide for conducting soil tests and plant analysis. CRC press. CR - [18] Meyer GA, Keliher PN. 1992. An Overview of Analysis by Inductively Coupled Plasma- Atomic Emission Spectrometry. Inductively Coupled Plasma in Analytical Atomic Spectrometry, 2nd: 473-516. CR - [19] Balaram, V., Rahaman, W., Roy, P. (2022). Recent advances in MC-ICP-MS applications in Earth andenvironmental sciences: Challenges and solutions. Geosystems and Geoenvironment, 1, 100019. CR - [20] NIST. (2001). National Institute of Standards and Technology Standard Reference Materials Catalog. 1-11 CR - [21] JMP®. (2024) https://www.jmp.com/en_us/home.html. (Access date 25 Jan 2025) CR - [22] Savaşlı, E., Önder, O., Karaduman, Y., Dayıoğlu, R., Özen, D., Özdemir, S., Akın, A., Tunca, Z.S., Demir, B., Aydın, N. (2019). The effect of soil and foliar ürea application at heading stage on grain yield and quality traits of bread wheat (Triticium aestivum L.). Turkish J Agric Sci Technol. 7, 1928-1936. CR - [23] Ahmed, I. A. M., Özcan, M. M., AlJuhaimi, F., & Albakry, Z. (2024). The Monitoring of Accumulations of Elements in Apple, Pear, and Quince Fruit Parts. Biological Trace Element Research, 1-7. CR - [24] OriginLab®. (2024). https://www.originlab.com/. (Accessed 21 Jan 2025) CR - [25] Khaleghi, A., & Khadivi, A. (2024). Morphological characterizations of wild nitre-bush (Nitraria schoberi L.) specimens. Genetic Resources and Crop Evolution, 71(1), 413-426. CR - [26] Khadivi-Khub, A., & Etemadi-Khah, A. (2015). Phenotypic diversity and relationships between morphological traits in selected almond (Prunus amygdalus) germplasm. Agroforestry Systems, 89, 205-216. CR - [27] Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop science, 43(4), 1235-1248. CR - [28] Chang, Y.C., & Lin, T.C. (2020). Temperature Effects on Fruit Development and Quality Performance of Nagami Kumquat (Fortunella margarita [Lour.] Swingle). The Horticulture Journal, 89 (4): 351-358. CR - [29] Toplu, C., Uygur, V., & Yildiz, E. (2009). Leaf mineral composition of olive varieties and their relation to yield and adaptation ability. Journal of Plant Nutrition, 32(9), 1560-1573. CR - [30] Tabachnick, B. G., Fidell, L. S., Ullman, J. B. (2013). Using multivariate statistics. 6, 497- 516. Boston, MA: pearson. CR - [31] Jolliffe, I. T. (2002). Principal component analysis for special types of data (pp. 338-372). Springer New York. CR - [32] Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. CR - [33] Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. CR - [34] Gower, J. C., Lubbe, S. G., & Le Roux, N. J. (2011). Understanding biplots. John Wiley & Sons. CR - [35] Mardia, K. V., Kent, J. T., & Taylor, C. C. (2024). Multivariate analysis (Vol. 88). John Wiley & Sons. CR - [36] Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244. CR - [37] Wilkinson, L., & Friendly, M. (2009). The history of the cluster heat map. The American Statistician, 63(2), 179-184. CR - [38] Atasoy, A. (2017). Soil geography of the district of Hassa (Hatay). Journal of International Social Research, 10(48), 253. UR - https://doi.org/10.18185/erzifbed.1630129 L1 - https://dergipark.org.tr/tr/download/article-file/4566129 ER -