TY - JOUR T1 - Investigation of The Standardization Method with Scattered X-Rays in Matrices Prepared with Different Diluters TT - FARKLI SEYRELTİCİLERLE HAZIRLANAN MATRİSLERDE SAÇILMIŞ X-IŞINLARI İLE STANDARDİZASYON YÖNTEMİNİN ARAŞTIRILMASI AU - Yılmaz, Demet AU - Korkmaz, Adem PY - 2025 DA - June Y2 - 2025 DO - 10.5281/zenodo.15739317 JF - Journal of Anatolian Physics and Astronomy JO - Journal of Anatolian Physics and Astronomy PB - Atatürk Üniversitesi WT - DergiPark SN - 2791-8718 SP - 1 EP - 12 VL - 4 IS - 1 LA - en AB - In this study, it is considered to evaluate the spectral intensity ratios for different matrices to be prepared using MnO2 and boric acid, sugar, starch and cellulose as binders. The areas under the Compton and coherent scattering peaks with Mn K X-ray were calculated and the relationship between different intensity ratios and the mean atomic number of diluted samples was investigated. 100 mCi Am-241point radioactive source was used to excite the targets. The emitted and scattered X-rays from targets were counted by a ULEGe detector. The changes in the scattering intensity ratios of the mean atomic numbers of the matrices prepared using different diluents were plotted graphically, the calibration curves and correlation coefficients obtained were interpreted. In addition, there is a third-degree polynomial relationship between Icoh+IComp/(μ/ρ)(Kα) intensity ratio of the prepared sample group and mean atomic number. The obtained calibration curves can be used for qualitative analysis in sample groups with the same matrix. KW - Qualitative analysis KW - Normalized scattering intensities KW - Qualitative analysis KW - EDXRF N2 - Bu çalışmada, bağlayıcı olarak MnO2 ve borik asit, şeker, nişasta ve selüloz kullanılarak hazırlanacak farklı matrisler için spektral şiddet oranlarının değerlendirilmesi düşünülmüştür. Mn K X-ışını ile Compton ve koherent saçılma piklerinin altındaki alanlar hesaplanmış ve farklı şiddet oranları ile seyreltilmiş numunelerin ortalama atom numaraları arasındaki ilişki incelenmiştir. Hedefleri uyarmak için 100 mCi Am-241nokta radyoaktif kaynak kullanılmıştır. Hedeflerden yayılan ve saçılan X-ışınları bir ULEGe dedektörü ile sayılmıştır. Farklı seyrelticiler kullanılarak hazırlanan matrislerin ortalama atom numaralarının saçılma şiddet oranlarındaki değişimleri grafiksel olarak çizilmiş, elde edilen kalibrasyon eğrileri ve korelasyon katsayıları yorumlanmıştır. Ayrıca hazırlanan örnek grubunun Icoh+IComp/(μ/ρ)(Kα) yoğunluk oranı ile ortalama atom numarası arasında üçüncü dereceden polinomsal bir ilişki bulunmaktadır. Elde edilen kalibrasyon eğrileri aynı matrise sahip örnek gruplarında nitel analiz için kullanılabilir. CR - Bauer, L.J., Wieder, F., Truong, V., Förste, F., Wagener, Y., Jonas, A., Praetz, S., Schlesiger, C., Kupsch, A., Müller, B.R., Kanngießer, B., Zaslansky, P., Mantouvalou, I., (2024). Absorption Correction for 3D Elemental Distributions of Dental Composite Materials Using Laboratory Confocal Micro-X-ray Fluorescence Spectroscopy. Analytical Chemistry, 96, 8441–8449. https://doi.org/10.1021/acs.analchem.4c00116. CR - Bowers, C., (2019). Matrix Effect Corrections in X-ray Fluorescence Spectrometry. Journal of Chemical Education, 96, 2597–2599. https://doi.org/10.1021/acs.jchemed.9b00630. CR - Büyükyıldız, M., (2016). Determination of the effective atomic numbers of FexCu1-x binary ferroalloys using a nondestructive technique: Rayleigh-to-Compton scattering ratio. Turk J. Phys. 40, 278-286. 10.3906/fiz-1603-25. CR - Chebakova, K.A., Dzidziguri, E.L., Sidorova, E.N., Vasiliev, A.A., Ozherelkov, D.Y., Pelevin, I.A., Gromov, A.A., Nalivaiko, A.Y., (2021). X-ray Fluorescence Spectroscopy Features of Micro- and Nanoscale Copper and Nickel Particle Compositions. Nanomaterials, 11, 2388. https://doi.org/10.3390/nano11092388. CR - Bertin, E.P., (1975). Principles and Practice of X-Ray Spectrometric Analysis. Plenum Press. Finkel’shtein, A.L., Gunicheva, T.N., (2008). Description of the dependence of intensity of x-ray fluorescence on the particle size of powder samples and pulp during x-ray fluorescent analysis. Inorganic Materials, 44, 1567–1571. https://doi.org/10.1134/S0020168508140136. CR - Hila, F.C., Asuncion-Astronomo, A., Dingle, C.A.M., Jecong, J.F.M., Javier-Hila, A.M. V., Gili, M.B.Z., Balderas, C. V., Lopez, G.E.P., Guillermo, N.R.D., Amorsolo, A. V., (2021). EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiation Physics and Chemistry, 182, 109331. https://doi.org/10.1016/j.radphyschem.2020.109331. CR - Hodoroaba, V.D., Rackwitz, V., (2014). Gaining improved chemical composition by exploitation of Compton-to-Rayleigh intensity ratio in XRF analysis. Anal. Chem. 86, 6858-6864. https://doi.org/10.1021/ac5000619. CR - Mantouvalou, I., Lachmann, T., Singh, S.P., Vogel-Mikuš, K., Kanngießer, B., (2017). Advanced Absorption Correction for 3D Elemental Images Applied to the Analysis of Pearl Millet Seeds Obtained with a Laboratory Confocal Micro X-ray Fluorescence Spectrometer. Analytical Chemistry, 89, 5453–5460. https://doi.org/10.1021/acs.analchem.7b00373. CR - Pérez, S., Vasquez, R., Pascual, G., Araya, J., Neira, J., Cespedes-Acuña, C.L., (2024). Toward the authentication of wines of Itata valley denomination of origin through total reflection x-ray fluorescence (TXRF) method for testing adulteration. A novel valuable tool by using Compton/Rayleigh scattering signals in wines. Food Bioscience, 61, 104475. https://doi.org/10.1016/j.fbio.2024.104475. CR - Rousseau, R.M., (2006). Corrections for matrix effects in X-ray fluorescence analysis—A tutorial. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 759–777. https://doi.org/10.1016/j.sab.2006.06.014. CR - Sitko, R., (2009). Quantitative X-ray fluorescence analysis of samples of less than ‘infinite thickness’: Difficulties and possibilities. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1161–1172. https://doi.org/10.1016/j.sab.2009.09.005. CR - Tee, B.P.E., Ganly, B., Mcllquham, J.D., Giang, P., Van Haarlem, Y., (2024). Fitting Compton peaks from first principles in x‐ray fluorescence spectra. X-Ray Spectrometry, https://doi.org/10.1002/xrs.3441. CR - Uzunoğlu, Z., Yilmaz, D., Şahin, Y., (2015). Quantitative x-ray spectrometric analysis with peak to Compton ratios. Radiation Physics and Chemistry, 112. https://doi.org/10.1016/j.radphyschem.2015.03.039. CR - Van Gysel, M., Lemberge, P., Van Espen, P., (2003). Description of Compton peaks in energy‐dispersive x‐ray fluorescence spectra. X-Ray Spectrometry, 32, 139–147. https://doi.org/10.1002/xrs.628. CR - Yılmaz, D., Boydaş, E., (2018). The use of scattering peaks for matrix effect correction in WDXRF analysis. Radiation Physics and Chemistry, 153, 17–20. https://doi.org/10.1016/j.radphyschem.2018.08.035. UR - https://doi.org/10.5281/zenodo.15739317 L1 - https://dergipark.org.tr/tr/download/article-file/4572505 ER -