TY - JOUR T1 - Alterations Induced by Nano-Polystyrene Administration in Biological Parameters of Host-Endoparasitoids (Galleria mellonella and Pimpla turionellae) and Host Hemocyte Counts TT - Nano-Polistiren Uygulamasının Konak-Endoparazitoitlerin (Galleria mellonella ve Pimpla turionellae) Biyolojik Parametrelerinde ve Konak Hemosit Sayılarında Oluşturduğu Değişiklikler AU - Uçkan, Fevzi AU - Ellibeş Gökkaya, Tuğba Nur AU - Demirtürk, Zülbiye AU - Mert, Serap PY - 2025 DA - June Y2 - 2025 DO - 10.31594/commagene.1632392 JF - Commagene Journal of Biology JO - Comm. J. Biol. PB - ABADER (Adıyaman Bilimsel Araştırmalar Derneği) WT - DergiPark SN - 2602-456X SP - 49 EP - 58 VL - 9 IS - 1 LA - en AB - Plastic pollution is one of the biggest threats to the environment and human health. Micro and nanoplastics are encountered in many areas of our daily lives and may accumulate in organisms, causing reduced life span, genotoxicity, and altered metabolism. Plastic pollution around the environment may lead to reductions in insect biodiversity and populations. It may also lead to the collapse of food webs and ecosystems of organisms that feed on them in the food chain. Therefore, the effects of nano-polystyrene (PSs) on the life cycle, biological characteristics, total hemocyte count (THCs) of the host, and hemocyte types of the model organism Galleria mellonella and its endoparasitoid Pimpla turionellae were investigated. Nano-PSs were produced according to the single emulsion solvent evaporation method and larval feeds were prepared with solutions of different concentrations. These diets were given to the larvae until they developed. The developmental time of the host-larvae fed with nano-PS-containing diets and the parasitoids that emerged using the pupae of these larvae as hosts were shortened. While the host adult weight and size increased, the weight of the parasitoid decreased. Dose-dependent decreases in THCs were observed. Prohemocyte, plasmatocyte, oenocytoid, and spherulocyte counts decreased, while granulocyte counts increased. Furthermore, the changes in the biology of the host exposed to nano-PSs indirectly affected the endoparasitoids. In addition, this study emphasizes that nanoplastic toxicity in honey-bees is generally ignored and that the consumption of bee products may pose potential hazards to human health. This reveals the crucial role of taking necessary precautions in beekeeping. KW - Cellular immunity KW - greater wax moth KW - life cycle KW - nano-plastic KW - parasitoid wasp N2 - Plastik kirliliği çevre ve insan sağlığı açısından en büyük tehditlerden biridir. Mikro ve nanoplastikler, günlük yaşamımızın birçok alanında karşımıza çıkmaktadır ve organizmalarda birikerek yaşam süresinin azalmasına, genotoksisiteye ve metabolizmanın değişmesine neden olabilmektedir. Çevredeki nanoplastik kontaminasyonu, böcek biyoçeşitliliğindeki ve popülasyonlarındaki azalmalara neden olabilir. Aynı zamanda besin zincirinde onlarla beslenen canlıların besin ağlarının ve ekosistemlerin çökmesine yol açabilir. Bu nedenle nano-polistiren (PS)’lerin model organizma Galleria mellonella ve endoparazitoiti Pimpla turionellae’nın yaşam döngüsüne, biyolojik özelliklerine, konağın toplam hemosit sayısına (THS) ve hemosit tiplerine etkileri incelendi. Nano-PS’ler tekli emülsiyon çözücü buharlaştırma yöntemine göre üretildi ve farklı konsantrasyonlarda solüsyonları ile larval besinler hazırlandı. Bu besinler, larvalara gelişinceye kadar verildi. Nano-PS içeren besinlerle beslenen konak larvaların ve bu larvaların pupalarını konak olarak kullanarak ortaya çıkan parazitoitlerin gelişim süreleri kısaldı. Konak ergin ağırlığı ve boyutları artarken, parazitoitin ağırlığı azaldı. THS’de doza bağlı azalmalar görüldü. Prohemosit, plazmatosit, önositoid ve sferülosit sayısının azaldığı, granülosit sayısının ise arttığı görüldü. Ayrıca nano-PS’lerle beslenen konağın biyolojisindeki değişiklikler, endoparazitoitleri dolaylı olarak etkiledi. Öte yandan bu çalışma ile bal arılarında nanoplastik toksisitesinin genellikle göz ardı edildiği ve arı ürünlerinin tüketilmesinin insan sağlığı için potansiyel tehlikeler yaratabileceği vurgulanmaktadır. Bu durum, arıcılıkta gerekli önlemlerin alınmasının önemini ortaya koymaktadır. CR - Aloisi, M., Grifoni, D., Zarivi, O., Colafarina, S., Morciano, P., & Poma, A.M.G. (2024). Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. International Journal of Molecular Sciences, 25(14), 7965. https://doi.org/10.3390/ijms25147965 CR - Altuntaş, H., Kılıç, A.Y., Uçkan, F., & Ergin, E. (2012). Effects of Gibberellic Acid on Hemocytes of Galleria mellonella L. (Lepidoptera: Pyralidae). Environmental Entomology, 41(3), 688-696. https://doi.org/10.1603/en11307 CR - Awet, T.T., Kohl, Y., Meier, F., Straskraba, S., Grün, A.L., Ruf, T., … & Emmerling, C. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1), 11. https://doi.org/10.1186/s12302-018-0140-6 CR - Bronskill, J. (1961). A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). Journal of the Lepidopterists' Society, 15(2), 102-104. CR - Calderone, N.W. (2012). Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009. PLOS ONE, 7(5), e37235. https://doi.org/10.1371/journal.pone.0037235 CR - Demirtürk, Z., Uçkan, F., & Mert, S. (2024). Interactions of alumina and polystyrene nanoparticles with the innate immune system of Galleria mellonella. Drug and Chemical Toxicology, 47(5), 483-495. https://doi.org/10.1080/01480545.2023.2217484 CR - Deng, Y., Jiang, X., Zhao, H., Yang, S., Gao, J., Wu, Y., … & Hou, C. (2021). Microplastic Polystyrene Ingestion Promotes the Susceptibility of Honeybee to Viral Infection. Environmental Science & Technology, 55(17), 11680-11692. https://doi.org/10.1021/acs.est.1c01619 CR - Dolar, A., Drobne, D., Dolenec, M., Marinšek, M., & Jemec Kokalj, A. (2022). Time-dependent immune response in Porcellio scaber following exposure to microplastics and natural particles. Science of the Total Environment, 818, 151816. https://doi.org/10.1016/j.scitotenv.2021.151816 CR - Dolar, A., Selonen, S., van Gestel, C.A.M., Perc, V., Drobne, D., & Jemec Kokalj, A. (2021). Microplastics, chlorpyrifos and their mixtures modulate immune processes in the terrestrial crustacean Porcellio scaber. Science of The Total Environment, 772, 144900. https://doi.org/10.1016/j.scitotenv.2020.144900 CR - El Kholy, S., & Al Naggar, Y. (2023). Exposure to polystyrene microplastic beads causes sex-specific toxic effects in the model insect Drosophila melanogaster. Scientific Reports, 13(1), 204. https://doi.org/10.1038/s41598-022-27284-7 CR - Gounari, S., Goras, G., & Thrasyvoulou, A. (2024). Dibrachys cavus, a promising parasitoid in the biological control of the greater wax moth (Galleria mellonella). Journal of Apicultural Research, 63(2), 323-328. https://doi.org/10.1080/00218839.2021.2008707 CR - Guimarães, A.T.B., de Lima Rodrigues, A.S., Pereira, P.S., Silva, F.G., & Malafaia, G. (2021). Toxicity of polystyrene nanoplastics in dragonfly larvae: An insight on how these pollutants can affect bentonic macroinvertebrates. Science of The Total Environment, 752, 141936. https://doi.org/10.1016/j.scitotenv.2020.141936 CR - Hu, D., Shen, M., Zhang, Y., Li, H., & Zeng, G. (2019). Microplastics and nanoplastics: would they affect global biodiversity change? Environmental Science and Pollution Research, 26(19), 19997-20002. https://doi.org/10.1007/s11356-019-05414-5 CR - Hu, M., & Palić, D. (2020). Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biology, 37, 101620. https://doi.org/10.1016/j.redox.2020.101620 CR - Kalman, J., Muñiz-González, A.B., García, M.Á., & Martínez-Guitarte, J.L. (2023). Chironomus riparius molecular response to polystyrene primary microplastics. Science of the Total Environment, 868, 161540. https://doi.org/10.1016/j.scitotenv.2023.161540 CR - Kholy, S.E., & Naggar, Y.A. (2022). Polystyrene Microplastic Beads Caused Cellular Alterations in midgut cells and Sex-Specific Toxic Effects on Survival, Starvation Resistance, and Excretion of the Model Insect Drosophila melanogaster. Research Square. https://doi.org/10.21203/rs.3.rs-1977878/v1 CR - Kim, S.W., & An, Y.J. (2019). Soil microplastics inhibit the movement of springtail species. Environment International, 126, 699-706. https://doi.org/10.1016/j.envint.2019.02.067 CR - Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A.M., & Sanden, M. (2020). Micro- and nanoplastic toxicity on aquatic life: Determining factors. Science of The Total Environment, 709, 136050. https://doi.org/10.1016/j.scitotenv.2019.136050 CR - Long, M., Paul-Pont, I., Hégaret, H., Moriceau, B., Lambert, C., … & Soudant, P. (2017). Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environmental Pollution, 228, 454-463. https://doi.org/10.1016/j.envpol.2017.05.047 CR - Martin-Folgar, R., Sabroso, C., Cañas-Portilla, A.I., Torres-Ruíz, M., González-Caballero, M.C., Dorado, H., … & Morales, M. (2024). DNA damage and molecular level effects induced by polystyrene (PS) nanoplastics (NPs) after Chironomus riparius (Diptera) larvae. Chemosphere, 346, 140552. https://doi.org/10.1016/j.chemosphere.2023.140552 CR - Muhammad, A., Zhang, N., He, J., Shen, X., Zhu, X., Xiao, J., … & Shao, Y. (2024). Multiomics analysis reveals the molecular basis for increased body weight in silkworms (Bombyx mori) exposed to environmental concentrations of polystyrene micro- and nanoplastics. Journal of Advanced Research, 57, 43-57. https://doi.org/10.1016/j.jare.2023.09.010 CR - Muhammad, A., Zhou, X., He, J., Zhang, N., Shen, X., Sun, C., … & Shao, Y. (2021). Toxic effects of acute exposure to polystyrene microplastics and nanoplastics on the model insect, silkworm Bombyx mori. Environmental Pollution, 285, 117255. https://doi.org/10.1016/j.envpol.2021.117255 CR - Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. https://doi.org/10.1021/acs.est.5b05416 CR - Oliveira, M., Almeida, M., & Miguel, I. (2019). A micro(nano)plastic boomerang tale: A never ending story? TrAC Trends in Analytical Chemistry, 112, 196-200. https://doi.org/10.1016/j.trac.2019.01.005 CR - Outhwaite, C.L., McCann, P., & Newbold, T. (2022). Agriculture and climate change are reshaping insect biodiversity worldwide. Nature, 605(7908), 97-102. https://doi.org/10.1038/s41586-022-04644-x CR - Parenti, C.C., Binelli, A., Caccia, S., Della Torre, C., Magni, S., Pirovano, G., & Casartelli, M. (2020). Ingestion and effects of polystyrene nanoparticles in the silkworm Bombyx mori. Chemosphere, 257, 127203. https://doi.org/10.1016/j.chemosphere.2020.127203 CR - Peng, B.Y., Xu, Y., Zhou, X., Wu, W.M., & Zhang, Y. (2024). Generation and Fate of Nanoplastics in the Intestine of Plastic-Degrading Insect (Tenebrio molitor Larvae) during Polystyrene Microplastic Biodegradation. Environmental Science & Technology, 58(23), 10368-10377. https://doi.org/10.1021/acs.est.4c01130 CR - Rothen-Rutishauser, B., Bogdanovich, M., Harter, R., Milosevic, A., & Petri-Fink, A. (2021). Use of nanoparticles in food industry: current legislation, health risk discussions and public perception with a focus on Switzerland. Toxicological & Environmental Chemistry, 103(4), 423-437. https://doi.org/10.1080/02772248.2021.1957471 CR - Sak, O., Uçkan, F., & Ergin, E. (2006). Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Belgian Journal of Zoology, 136(2006), 53-58. CR - Shafiq ur, R. (2009). Evaluation of malonaldialdehyde as an index of chlorpyriphos insecticide exposure in Apis mellifora: Ameliorating role of melatonin and α-tocopherol against oxidative stress. Toxicological & Environmental Chemistry, 91(6), 1135-1148. https://doi.org/10.1080/02772240802542617 CR - Shen, J., Liang, B., & Jin, H. (2023). The impact of microplastics on insect physiology and the indication of hormesis. TrAC Trends in Analytical Chemistry, 165, 117130. https://doi.org/10.1016/j.trac.2023.117130 CR - Toussaint, B., Raffael, B., Angers-Loustau, A., Gilliland, D., Kestens, V., Petrillo, M., … & Van den Eede, G. (2019). Review of micro- and nanoplastic contamination in the food chain. Food Additives & Contaminants, Part A, 36(5), 639-673. https://doi.org/10.1080/19440049.2019.1583381 CR - Tu, Q., Deng, J., Di, M., Lin, X., Chen, Z., Li, B., … & Zhang, Y. (2023). Reproductive toxicity of polystyrene nanoplastics in Drosophila melanogaster under multi-generational exposure. Chemosphere, 330, 138724. https://doi.org/10.1016/j.chemosphere.2023.138724 CR - Uçkan, F., Öztürk, Z., Altuntaş, H., & Ergin, E. (2011). Effects of Gibberellic Acid (GA3) on Biological Parameters and Hemolymph Metabolites of the Pupal Endoparasitoid Pimpla turionellae (Hymenoptera: Ichneumonidae) and its Host Galleria mellonella (Lepidoptera: Pyralidae). Journal of the Entomological Research Society, 13(3), 1-14. CR - Uçkan, F., & Sak, O. (2010). Cytotoxic effect of cypermethrin on Pimpla turionellae (Hymenoptera: Ichneumonidae) larval hemocytes. https://doi.org/10.5053/ekoloji.2010.753 CR - Urbisz, A.Z., Małota, K., Chajec, Ł., & Sawadro, M.K. (2024). Size-dependent and sex-specific negative effects of micro- and nano-sized polystyrene particles in the terrestrial invertebrate model Drosophila melanogaster. Micron, 176, 103560. https://doi.org/10.1016/j.micron.2023.103560 CR - Voget, M. (1989). Bees and beeproducts as biological indicators of environmental contamination: An economical alternative way of monitoring pollutants. Toxicological & Environmental Chemistry, 20-21(1), 199-202. https://doi.org/10.1080/02772248909357376 CR - Wang, J., Coffin, S., Sun, C., Schlenk, D., & Gan, J. (2019). Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 249, 776-784. https://doi.org/10.1016/j.envpol.2019.03.102 CR - Wang, K., Li, J., Zhao, L., Mu, X., Wang, C., Wang, M., … & Wu, L. (2021). Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks. Journal of Hazardous Materials, 402, 123828. https://doi.org/10.1016/j.jhazmat.2020.123828 CR - Wang, W., Ge, J., Yu, X., & Li, H. (2020). Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of The Total Environment, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841 CR - Wang, Z.J., Zhang, Y.H., Gao, R.Y., Jia, H.B., Liu, X.J., Hu, Y.W., … & Zhang, J.P. (2023). Polystyrene Nanoparticle Uptake and Deposition in Silkworm and Influence on Growth. Sustainability, 15(9), 7090. https://doi.org/10.3390/su15097090 CR - Zhang, J., Ma, C., Xia, X., Li, Y., Lin, X., Zhang, Y., & Yang, Z. (2023). Differentially Charged Nanoplastics Induce Distinct Effects on the Growth and Gut of Benthic Insects (Chironomus kiinensis) via Charge-Specific Accumulation and Perturbation of the Gut Microbiota. Environmental Science & Technology, 57(30), 11218-11230. https://doi.org/10.1021/acs.est.3c02144 UR - https://doi.org/10.31594/commagene.1632392 L1 - https://dergipark.org.tr/tr/download/article-file/4576023 ER -