TY - JOUR T1 - Üniversite Öğrencilerinin Yapay Zekaya Yönelik Kaygı ve Tutumlarının İncelenmesi TT - An Investigation of University Students' Anxiety and Attitudes Towards Artificial Intelligence AU - Dönmez, İsmail AU - Çelik, Sevgi PY - 2025 DA - August Y2 - 2025 JF - Gazi Eğitim Bilimleri Dergisi JO - GJES PB - Parantez Teknoloji WT - DergiPark SN - 2149-4932 SP - 346 EP - 370 VL - 11 IS - 2 LA - tr AB - Yapay zeka, yükseköğretim de dahil olmak üzere çeşitli sektörleri hızla dönüştürmektedir. Yapay zekanın benimsenmesinin teknik ve pedagojik faydaları geniş çapta tartışılırken, psikolojik ve duygusal etkileri yeterince araştırılmamıştır. Bu araştırma üniversite öğrencilerinin yapay zekâya yönelik tutum ve kaygılarını anlamayı amaçlamaktadır. Araştırmada, nicel araştırma yöntemlerinden, kesitsel bir tasarım modeli kullanılmıştır. Veri toplama araçlarını demografik bilgiler, yapay zeka tutum ölçeği ve yapay zeka kaygı ölçeği oluşturmaktadır. Örneklemi üç yükseköğretim kurumundan 599 üniversite öğrencisi oluşturmaktadır. Verilerin analizinde ortalama, standart sapma, bağımsız örneklem t-testi, ANOVA ve pearson korelasyon analizleri kullanılmıştır. Araştırma sonucunda katılımcıların, yapay zekaya karşı orta ila nötr tutum sergilediği tespit edilmiştir. Yapay zeka ile ilgili kaygılarının genellikle düşük ile orta düzey arasında olduğunu göstermektedir. Bulgular yapay zekanın günlük uygulamaları ve toplumsal etkileri konusunda belirsizlik olduğuna işaret etmektedir. Yapay zeka işlevlerini anlama ve iş değiştirme gibi potansiyel toplumsal etkileri konusunda orta düzeyde kaygı tespit edilmiştir. Erkek öğrenciler, kız öğrencilere kıyasla daha olumlu tutum ve daha düşük kaygı bildirmiştir. Kurumlar arasında tutum ve kaygı düzeylerinde de farklılıklar gözlenmiştir. Ayrıca yapay zeka tutum ile yapay zeka kaygısı arasında anlamlı bir negatif korelasyon bulunmuştur. Bu da yapay zekaya ilişkin olumlu tutumu teşvik etmenin kaygıyı azaltmaya yardımcı olabileceğini işaret etmektedir. Gelecekteki araştırmalarda, yapay zekanın tutum ve kaygıları etkileyen ek demografik ve psikolojik faktörlerin incelenmesi önerilir. KW - Yapay Zeka KW - Yapay Zeka Tutumları KW - Yapay Zeka Kaygısı KW - Teknoloji Kabul Modeli (TAM) N2 - Artificial intelligence is rapidly transforming various sectors, including higher education. While the technical and pedagogical benefits of AI adoption have been widely discussed, its psychological and emotional effects have been under-researched. This study aims to understand university students' attitudes and concerns towards artificial intelligence. In the study, a cross-sectional design model, one of the quantitative research methods, was used. Data collection tools consist of demographic information, artificial intelligence attitude scale, artificial intelligence anxiety scale. The sample consists of 599 university students from three higher education institutions. Mean, standard deviation, independent sample t-test, ANOVA and Pearson correlation analyses were used to analyse the data. As a result of the research, it was determined that the participants exhibited moderate to neutral attitudes towards artificial intelligence. It shows that their concerns about artificial intelligence are generally between low and medium level. The findings indicate that there is uncertainty about the daily applications and societal impacts of AI. Moderate anxiety was observed about understanding AI functions and potential societal impacts such as changing jobs. Male students reported more positive attitudes and lower anxiety compared to female students. Differences in attitudes and anxiety levels were also observed between institutions. In addition, a significant negative correlation was found between AI attitude and AI anxiety. This indicates that promoting a positive attitude towards AI may help reduce anxiety. In future research, it is recommended to examine additional demographic and psychological factors that affect attitudes and concerns about AI. CR - Abid, S., Awan, B., Ismail, T., Sarwar, N., Sarwar, G., Tariq, M., … & Khan, A. (2019). Artificial intelligence: Medical student’s attitude in district peshawar Pakistan. Pakistan Journal of Public Health, 9(1), 19-21. https://doi.org/10.32413/pjph.v9i1.295 CR - Akkaya, B., Özkan, A., & Özkan, H. (2021). Yapay zekâ kaygı (YZK) ölçeği: Türkçeye uyarlama, geçerlik ve güvenirlik çalışması. Alanya Akademik Bakış, 5(2), 1125-1146. https://doi.org/10.29023/alanyaakademik.833668 CR - Allen, B., McGough, A. S., & Devlin, M. (2021). Toward a framework for teaching artificial intelligence to a higher education audience. ACM Transactions on Computing Education (TOCE), 22(2), 1-29. https://doi.org/10.1145/3485062 CR - Altun, M. (2024). Yapay zekâ üzerine fikri bir analiz. Dicle İlahiyat Dergisi, 26(2), 227-249. https://doi.org/10.58852/dicd.1386730 CR - Ateş, A., & Bahşi, N. (2022). The effects of emotional intelligence of the foreign students learning Turkish language on speaking and writing anxiety. Education Quarterly Reviews, 5(4). 160-171. https://doi.org/10.31014/aior.1993.05.04.582 CR - Avcı, E. (2024). Yapay zekanın toplumsal karşılığı-karşıtlığı. Yalova Üniversitesi Sosyal Bilimler Dergisi, 14(2), 239-259. https://doi.org/10.17828/yalovasosbil.1419070 CR - Cai, Z., Fan, X., & Du, J. (2017). Gender and attitudes toward technology use: A meta-analysis. Computers ve Education, 105, 1-13. https://doi.org/10.1016/j.compedu.2016.11.003 CR - Creswell, J. W., Clark, V. L. P., Gutmann, M. L., & Hanson, W. E. (2003). Advanced mixed. Handbook of Mixed Methods in Social ve Behavioral Research, 209, 209-240. CR - Çağal, M. (2023). Yapay zekâ ve robot teknolojisine yönelik risk algısı üzerine nitel bir çalışma. Hacettepe Üniversitesi Edebiyat Fakültesi Dergisi, 40(2), 577-598. https://doi.org/10.32600/huefd.1176896 CR - Çakır, Z., Ceyhan, M. A., Gönen, M., & Erbaş, Ü. (2023). Yapay zeka teknolojilerindeki gelişmeler ile eğitim ve spor bilimlerinde paradigma değişimi. Dede Korkut Spor Bilimleri Dergisi, 1(2), 56-71. CR - Çivilidağ, A. (2022). Üniversite idari personeli üzeri̇nde iş stresi, sanal kaytarma ve örgütsel adalet. International Journal of Eurasia Social Sciences, 49, 823-846. http://dx.doi.org/10.35826/ijoess.3116 CR - Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982-1003. http://dx.doi.org/10.1287/mnsc.35.8.982 CR - Deng, H., Jia, W., & Chai, D. (2022). Discussion on innovative methods of higher teacher education and training based on new artificial intelligence. Security and Communication Networks, 3899413, 1-10. https://doi.org/10.1155/2022/3899413 CR - Dergunova, Y., Aubakirova, R., Yelmuratova, B., Gulmira, T., Yuzikovna, P., & Antikeyeva, S. (2022). Artificial intelligence awareness levels of students. International Journal of Emerging Technologies in Learning, 17(18), 26-37. https://doi.org/10.3991/ijet.v17i18.32195 CR - Fraenkel, J., Wallen, N., & Hyun, H. (2012). How to design and evaluate research in education. McGraw-Hill Education. CR - Gallix, B., & Chong, J. (2019). Artificial intelligence in radiology: Who’s afraid of the big bad wolf?. European Radiology, 29(4), 1637-1639. https://doi.org/10.1007/s00330-018-5995-9 CR - Golzar, J., Noor, S., & Tajik, O. (2022). Convenience sampling in descriptive research. International Journal of Education ve Language Studies, 1(2), 72–77. CR - Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long range planning, 46(1-2), 1-12. CR - Hinojo-Lucena, F., Díaz, I., Cáceres-Reche, M., & Rodríguez, J. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 1-9. https://doi.org/10.3390/educsci9010051 CR - Huang, M., Liu, S., Zhang, Y., Cui, K., & Wen, Y. (2022). Basic theory and practice teaching method based on the cerebellar model articulation controller learning algorithm. Wireless Communications and Mobile Computing, 2022(1), 1-11. https://doi.org/10.1155/2022/2396645 CR - Jian, H., Shen, G., & Ren, X. (2021). Connotation analysis and paradigm shift of teaching design under artificial intelligence technology. International Journal of Emerging Technologies in Learning, 16(5), 73-86. https://doi.org/10.3991/ijet.v16i05.20287 CR - Karasar, N. (2012). Bilimsel araştırma yöntemi. Nobel Yayınları. CR - Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2024). The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. International Journal of Human–Computer Interaction, 40(2), 497-514. https://doi.org/10.1080/10447318.2022.2151730 CR - Kılıçarslan, S. (2019). Legal status of artificial intelligence and debates on its legal personality. Yıldırım Beyazıt Hukuk Dergisi, (2), 363-389. https://doi.org/10.33432/ybuhukuk.599224 CR - Koyuncuoğlu, D. (2023). Yükseköğretimde yapay zekâ tabanlı sürdürülebilirlik yaklaşımı ve karşılaştırmalı bir inceleme. Journal of Academic Value Studies, 9(3), 182-194. http://dx.doi.org/10.29228/javs.72130 CR - Kundu, A., & Bej, T. (2025). Transforming EFL teaching with AI: A systematic review of empirical studies. International Journal of Artificial Intelligence in Education, 1-34. https://doi.org/10.1007/s40593-025-00470-0 CR - Kurtcu, F. (2024). Yapay zekâ ve tipografi bağlamında değişen süreçler. Rumelide Dil Ve Edebiyat Araştırmaları Dergisi, (40), 517-531. https://doi.org/10.29000/rumelide.1502212 CR - Leant, D. B., & Feigenbaum, E. A. (1987). On the threshold of knowledge. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence (pp. 1173-1182). CR - Liu, Z., & Xu, X. (2022). Studying the impact of health education on student knowledge and behavior through big data and cloud computing. Scientific Programming, 2022, 1-11. https://doi.org/10.1155/2022/4160821 CR - Pinto dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., ... & Baeßler, B. (2019). Medical students' attitude towards artificial intelligence: A multicentre survey. European radiology, 29, 1640-1646. https://doi.org/10.1007/s00330-018-5601-1 CR - Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards artificial intelligence scale. Computers in Human Behavior Reports, 1, 100014. 1-13. https://doi.org/10.1016/j.chbr.2020.100014 CR - Sindermann, C., Sha, P., Zhou, M., Wernicke, J., Schmitt, H. S., Li, M., ... & Montag, C. (2021). Assessing the attitude towards artificial intelligence: Introduction of a short measure in German, Chinese, and English language. KI- Künstliche Intelligenz, 35(1), 109-118. https://doi.org/10.1007/s13218-020-00689-0 CR - Sukamolson, S. (2007). Fundamentals of quantitative research. Language Institute Chulalongkorn University, 1(3), 1-20. CR - Talaat, M. (2021). Activating the use of artificial intelligence techniques in higher education. Journal of the Egyptian Society for Information Systems and Computer Technology, 25(25), 5-12. https://doi.org/10.21608/jstc.2021.191422 CR - Tomar, P., & Verma, S. (2021). Impact and role of AI technologies in teaching, learning, and research in higher education. In Impact of AI Technologies on Teaching, Learning, and Research in Higher Education (pp. 190-203). IGI Global. https://doi.org/10.4018/978-1-7998-4763-2.ch012 CR - Turan, T., Turan, G., & Küçüksille, E. (2022). Yapay zekâ etiği: Toplum üzerine etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 292-299. https://doi.org/10.29048/makufebed.1058538 CR - Uslu, B. (2023). Üniversitelerde yapay zekanın kullanım alanları: Potansiyel yararları ve olası zorluklar. Eğitimde Kuram ve Uygulama, 19(2), 227-239. https://doi.org/10.17244/eku.1355304 CR - Wang, Y. Y., & Wang, Y. S. (2019). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 1–16. https://doi.org/10.1080/10494820.2019.1674887 CR - Yang, S. J., Ogata, H., Matsui, T., & Chen, N. S. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2, 100008. https://doi.org/10.1016/j.caeai.2021.100008 CR - Zawacki‐Richter, O., Marín, V., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0 CR - Zhang, B., & Dafoe, A. (2019). Artificial intelligence: American attitudes and trends. Available at SSRN 3312874. CR - Zhang, X., & Chen, L. (2021). College english smart classroom teaching model based on artificial intelligence technology in mobile information systems. Mobile Information Systems, 2021(1), 1-12. https://doi.org/10.1155/2021/5644604 CR - Zhao, W. W., & Yang, Y. (2022). Artificial intelligence meets onto-epistemologies: Distinctive sociomaterial perspectives for organizational research at the intersection of digital business ecosystems and robotics. In Handbook on Digital Business Ecosystems (pp. 424-437). Edward Elgar Publishing. UR - https://dergipark.org.tr/tr/pub/gebd/issue//1634088 L1 - https://dergipark.org.tr/tr/download/article-file/4583586 ER -