TY - JOUR T1 - ASSESSMENT OF BIORELEVANT MEDIA TO ANTICIPATE FOOD EFFECT OF ORAL RITONAVIR AMORPHOUS SOLID DISPERSIONS TT - ORAL RİTONAVİR AMORF KATI DİSPERSİYONLARININ YİYECEK ETKİSİNİ TAHMİN ETMEK İÇİN BİYOUYUMLU ORTAMLARIN DEĞERLENDİRİLMESİ AU - Oktay, Ayşe Nur AU - Polli, James PY - 2025 DA - September Y2 - 2025 DO - 10.33483/jfpau.1636653 JF - Journal of Faculty of Pharmacy of Ankara University JO - J. Fac. Pharm. Ankara PB - Ankara Üniversitesi WT - DergiPark SN - 1015-3918 SP - 729 EP - 742 VL - 49 IS - 3 LA - en AB - Objective: The objective was to evaluate the polymers effects on solubility, solubilization capacity and dissolution of films in biorelevant media, thus, to understand the main mechanism underlaying RTN’s negative food effect.Material and Method: Amorphous films were prepared with various polymers via solvent-casting method, then solubility, solubilization capacity and dissolution studies were performed in biorelevant media (FeSSIF-V2 and FaSSIF-V2) and maleic acid buffers (pH 5.8 and 6.5).Result and Discussion: Polymer rank-order to increase RTN solubility in FeSSIF-V2 was SoluPlus>EudragitS100>PVPVA=PEG6000>HPMCAS-L. For FaSSIF-V2, only EudragitS100, SoluPlus and PVP-VA increased RTN solubility. Solubilization capacity studies showed that RTN release was higher for 20% drug loaded films than for 40% for all polymers except for HPMCAS H in FeSSIF-V2, and for HPMCAS-H and HPMCAS-L:H in FaSSIF-V2. In FeSSIF-V2, dissolution studies showed that RTN films from HPMCAS-L and PVP-VA provided higher RTN release compared to other polymers in early time points. AUC(0-120 min) in FaSSIF-V2 media was 9.0-fold, 8.3-fold, 5.9-fold, and 5.0-fold higher for SoluPlus, HPMCAS-L, PVPVA and HPMCAS-L:H, respectively, compared to crystalline RTN. Although, RTN’s negative food effect, which was not replicated here in vitro, may be due to more complex interactions between drug, polymer, and food in vivo than simulated here using FeSSIF-V2 and FaSSIF-V2. KW - Biorelevant media KW - film KW - food effect KW - ritonavir N2 - Amaç: Polimerlerin, biyouyumlu ortamlarda filmlerin çözünürlüğü, çözünme kapasitesi ve çözünmesi üzerindeki etkilerinin değerlendirilmesi ve böylece yiyeceklerin RTN üzerindeki olumsuz etkisinin altında yatan temel mekanizmanın anlaşılması amaçlanmıştır.Gereç ve Yöntem: Çeşitli polimerlerle çözücü-dökme yöntemi ile amorf filmler hazırlanmıştır, daha sonra biyouyumlu ortamlarda (FeSSIF-V2 ve FaSSIF-V2) ve maleik asit tamponlarında (pH 5.8 ve 6.5) çözünürlük, çözünme kapasitesi ve çözünme hızı çalışmaları gerçekleştirilmiştir.Sonuç ve Tartışma: FeSSIF-V2'de RTN çözünürlüğünü artırmak için polimer sıralaması SoluPlus>Eudragit S100>PVPVA=PEG6000>HPMCAS-L’dir. FaSSIF-V2 için sadece Eudragit S100, SoluPlus ve PVPVA RTN çözünürlüğünü artırmıştır. Çözünürlük kapasitesi çalışmaları, RTN salınımının FeSSIF-V2'de HPMCAS-H hariç ve FaSSIF-V2'de HPMCAS-H ve HPMCAS-L:H hariç tüm polimerler için %20 ilaç yüklemeye sahip filmlerde %40'tan daha yüksek olduğunu göstermiştir. FeSSIF-V2'de çözünme çalışmaları, HPMCAS-L ve PVPVA'dan elde edilen RTN filmlerinin erken zaman noktalarında diğer polimerlere kıyasla daha yüksek RTN salınımı sağladığını göstermiştir. FaSSIF-V2 ortamındaki AUC(0-120 dk) sırasıyla SoluPlus, HPMCAS-L, PVPVA ve HPMCAS-L:H için kristal RTN ile karşılaştırıldığında 9.0 kat, 8.3 kat, 5.9 kat ve 5.0 kat daha yüksek bulunmuştur. Bununla birlikte, bu çalışmada in vitro olarak görülmeyen RTN'nin negatif yiyecek etkisi, burada FeSSIF-V2 ve FaSSIF-V2 kullanılarak simüle edilenden daha karmaşık ilaç, polimer ve yiyecek etkileşimlerinden kaynaklanıyor olabilir. CR - 1. Qin, Y., Xiao, C., Li, X., Huang, J., Si, L., Sun, M. (2022). Enteric polymer–based amorphous solid dispersions enhance oral absorption of the weakly basic drug nintedanib via stabilization of supersaturation. Pharmaceutics, 14 (9), 1830. [CrossRef] CR - 2. Adhikari, A., Polli, J.E. (2020). Characterization of grades of HPMCAS spray dried dispersions of itraconazole based on supersaturation kinetics and molecular interactions impacting formulation performance. Pharmaceutical Research, 37, 1-15. [CrossRef] CR - 3. Ng, J., Klein, C., Chiu, Y., Awni, W., Ng, J., Cui, Y., Morris, J., Podsadecki, T., Kim, D., Bernstein, B. (2008). The effect of food on ritonavir bioavailability following administration of ritonavir 100 mg film-coated tablet in healthy adult subjects. Journal of the International AIDS Society, 11, 1-2. [CrossRef] CR - 4. Salem, A.H., Chiu, Y.L., Valdes, J.M., Nilius, A.M., Klein, C.E. (2015). A novel ritonavir paediatric powder formulation is bioequivalent to ritonavir oral solution with a similar food effect. Antiviral Therapy, 20(4), 425-432. [CrossRef] CR - 5. Moseson, D.E., Tran, T.B., Karunakaran, B., Ambardekar, R., Hiew, T.N. (2024). Trends in amorphous solid dispersion drug products approved by the US Food and Drug Administration between 2012 and 2023. International Journal of Pharmaceutics: X, 100259. [CrossRef] CR - 6. Wang, L., Ding, Z., Wang, Z., Zhao, Y., Wu, H., Wei, Q., Gao, L., Han, J. (2024). The development of an oral solution containing nirmatrelvir and ritonavir and assessment of its pharmacokinetics and stability. Pharmaceutics, 16 (1), 109. [CrossRef] CR - 7. Hsu, A., Granneman, G.R., Bertz, R.J. (1998). Ritonavir: Clinical pharmacokinetics and interactions with other anti-HIV agents. Clinical Pharmacokinetics, 35, 275-91. [CrossRef] CR - 8. Kempf, D.J., Marsh, K.C., Denissen, J.F., McDonald, E., Vasavanonda, S., Flentge, C.A., Green, B.E., Fino, L., Park, C.H., Kong, X.P. (1995). ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proceedings of the National Academy of Sciences, 92 (7), 2484-2488. [CrossRef] CR - 9. Benet, L.Z. (2023). Solubility-permeability ınterplay in facilitating the prediction of drug disposition routes, extent of absorption, food effects, brain penetration and drug induced liver injury potential. Journal of Pharmaceutical Sciences, 112 (9), 2326-2331. [CrossRef] CR - 10. Xu, H., Vela, S., Shi, Y., Marroum, P., Gao, P. (2017). In vitro characterization of ritonavir drug products and correlation to human in vivo performance. Molecular Pharmaceutics, 14 (11), 3801-3814. [CrossRef] CR - 11. Patel, R.P., Cristofoletti, R., Wu, F., Al Shoyaib, A., Polli, J.E. (2024). In vitro lipolysis model to predict food effect of poorly water-soluble drugs itraconazole, rivaroxaban, and ritonavir. Journal of Pharmaceutical Sciences, 113(8), 2361-2373. [CrossRef] CR - 12. Arora, S., Pansari, A., Kilford, P., Jamei, M., Gardner, I., Turner, D.B. (2020). Biopharmaceutic in vitro in vivo extrapolation (IVIV_E) informed physiologically-based pharmacokinetic model of ritonavir norvir tablet absorption in humans under fasted and fed state conditions. Molecular Pharmaceutics, 17 (7), 2329-2344. [CrossRef] CR - 13. Jamil, R., Xu, T., Shah, H.S., Adhikari, A., Sardhara, R., Nahar, K., Morris, K.R., Polli, J.E. (2021). Similarity of dissolution profiles from biorelevant media: Assessment of interday repeatability, interanalyst repeatability, and interlaboratory reproducibility using ibuprofen and ketoconazole tablets. European Journal of Pharmaceutical Sciences, 156, 105573. [CrossRef] CR - 14. Oktay, A.N., Polli, J.E. (2024). Screening of polymers for oral ritonavir amorphous solid dispersions by film casting. Pharmaceutics, 16 (11), 1373. [CrossRef] CR - 15. Biorelevant (2025) Media Preparation Tool. Retrieved January 5, 2025, from https://biorelevant.com/#media_prep_tool_tab. Accessed date: 20.02.2025. CR - 16. Oktay, A.N., Polli, J.E. (2022). Comparison of a single pharmaceutical surfactant versus intestinal biorelevant media for etravirine dissolution: Role and impact of micelle diffusivity. International Journal of Pharmaceutics, 624, 122015. [CrossRef] CR - 17. Karakucuk, A., Celebi, N., Teksin, Z.S. (2016). Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A design of experiment approach. European Journal of Pharmaceutical Sciences, 95, 111-121. [CrossRef] CR - 18. Karakucuk, A., Teksin, Z.S., Eroglu, H., Celebi, N. (2019). Evaluation of improved oral bioavailability of ritonavir nanosuspension. European Journal of Pharmaceutical Sciences, 131, 153-158. [CrossRef] CR - 19. Rodríguez-Spong, B., Acciacca, A., Fleisher, D., Rodríguez-Hornedo, Nr. (2008). pH-induced nanosegregation of ritonavir to lyotropic liquid crystal of higher solubility than crystalline polymorphs. Molecular Pharmaceutics, 5(6), 956-967. [CrossRef] CR - 20. Law, D., Krill, S.L., Schmitt, E.A., Fort, J.J., Qiu, Y., Wang, W., Porter, W.R. (2001). Physicochemical considerations in the preparation of amorphous ritonavir–poly (ethylene glycol) 8000 solid dispersions. Journal of Pharmaceutical Sciences, 90 (8), 1015-1025. [CrossRef] CR - 21. Law, D., Schmitt, E.A., Marsh, K.C., Everitt, E.A., Wang, W., Fort, J.J., Krill, S.L., Qiu, Y. (2004). Ritonavir–PEG 8000 amorphous solid dispersions: In vitro and in vivo evaluations. Journal of Pharmaceutical Sciences, 93(3), 563-570. [CrossRef] CR - 22. Wuyts, B., Brouwers, J., Mols, R., Tack, J., Annaert, P., Augustijns, P. (2013). Solubility profiling of HIV protease inhibitors in human intestinal fluids. Journal of Pharmaceutical Sciences, 102 (10), 3800-3807. [CrossRef] CR - 23. Kokott, M., Breitkreutz, J., Wiedey, R. (2024). The interplay of poorly soluble drugs in dissolution from amorphous solid dispersions. International Journal of Pharmaceutics: X. 7, 100243. [CrossRef] CR - 24. Pignatello, R., Corsaro, R., Bonaccorso, A., Zingale, E., Carbone, C., Musumeci, T. (2022) Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Delivery and Translational Research, 12 (8), 1991-2006. [CrossRef] CR - 25. Higashi, K., Hayashi, H., Yamamoto, K., Moribe, K. (2015). The effect of drug and Eudragit®s 100 miscibility in solid dispersions on the drug and polymer dissolution rate. International Journal of Pharmaceutics, 494(1), 9-16. [CrossRef] CR - 26. Savardekar, R.Y., Sherikar, A.S. (2020). Screening of Ketoprofen-Poloxamer and Ketoprofen-Eudragit solid dispersions for improved physicochemical characteristics and dissolution profile. Brazilian Journal of Pharmaceutical Sciences, 56, e18641. [CrossRef] CR - 27. Honick, M., Das, S., Hoag, S.W., Muller, F.X., Alayoubi, A., Feng, X., Zidan, A., Ashraf, M., Polli, J.E. (2020). The effects of spray drying, HPMCAS grade, and compression speed on the compaction properties of itraconazole-HPMCAS spray dried dispersions. European Journal of Pharmaceutical Sciences, 155, 105556. [CrossRef] CR - 28. Men, S., Polli, J.E. (2024). Microscope-enabled disc dissolution system: Concordance between drug and polymer dissolution from an amorphous solid dispersion disc and visual disc degradation. Journal of Pharmaceutical Sciences, 113(12), 3586-3598. [CrossRef] CR - 29. Simões, M.F., Pereira, A., Cardoso, S., Cadonau, S., Werner, K., Pinto, R.M., Simões, Sr. (2019). Five-stage approach for a systematic screening and development of etravirine amorphous solid dispersions by hot-melt extrusion. Molecular Pharmaceutics, 17 (2), 554-568. [CrossRef] CR - 30. Shamma, R.N., Basha, M. (2013). Soluplus®: A novel polymeric solubilizer for optimization of carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder Technology, 237, 406-414. [CrossRef] CR - 31. Nguyen, H.T., Van Duong, T., Taylor, L.S. (2023). Impact of gastric pH variations on the release of amorphous solid dispersion formulations containing a weakly basic drug and enteric polymers. Molecular Pharmaceutics, 20 (3), 1681-1695. [CrossRef] CR - 32. Sarabu, S., Kallakunta, V.R., Bandari, S., Batra, A., Bi, V., Durig, T., Zhang, F., Repka, M.A. (2020). Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: Effect of drug physicochemical properties. Carbohydrate Polymers, 233, 115828. [CrossRef] CR - 33. Koziolek, M., Grimm, M., Schneider, F., Jedamzik, P., Sager, M., Kühn, J.P., Siegmund, W., Weitschies, W. (2016). Navigating the human gastrointestinal tract for oral drug delivery: Uncharted waters and new frontiers. Advanced Drug Delivery Reviews, 101, 75-88. [CrossRef] CR - 34. Abuhelwa, A.Y., Williams, D.B., Upton, R.N., Foster, D.J. (2017). Food, gastrointestinal pH, and models of oral drug absorption. European Journal of Pharmaceutics and Biopharmaceutics, 112, 234-248. [CrossRef] CR - 35. Craig, D.Q. (2002). The mechanisms of drug release from solid dispersions in water-soluble polymers. International Journal of Pharmaceutics, 231 (2), 131-144. [CrossRef] CR - 36. Lu, Y., Tang, N., Lian, R., Qi, J., Wu, W. (2014). Understanding the relationship between wettability and dissolution of solid dispersion. International Journal of Pharmaceutics, 465(1-2), 25-31. [CrossRef] CR - 37. Choi, M.J., Woo, M.R., Choi, H.G., Jin, S.G. (2022). Effects of polymers on the drug solubility and dissolution enhancement of poorly water-soluble rivaroxaban. International Journal of Molecular Sciences, 23 (16), 9491. [CrossRef] CR - 38. Metre, S., Mukesh, S., Samal, S.K., Chand, M., Sangamwar, A.T. (2018). Enhanced biopharmaceutical performance of rivaroxaban through polymeric amorphous solid dispersion. Molecular Pharmaceutics, 15 (2), 652-668. [CrossRef] CR - 39. Kim, J.S., Din, F.U., Lee, S.M., Kim, D.S., Woo, M.R., Cheon, S., Ji, S.H., Kim, J.O., Youn, Y.S., Oh, K.T. (2021). Comparison of three different aqueous microenvironments for enhancing oral bioavailability of sildenafil: Solid self-nanoemulsifying drug delivery system, amorphous microspheres and crystalline microspheres. International Journal of Nanomedicine, 5797-5810. [CrossRef] UR - https://doi.org/10.33483/jfpau.1636653 L1 - https://dergipark.org.tr/tr/download/article-file/4595278 ER -