TY - JOUR T1 - CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS TT - ANALİTİK HİYERARŞİ PROSESİ KULLANILARAK DÜŞÜK KARBON EMİSYONU İÇİN KRİTİK METAL SEÇİMİ AU - Kurşunoğlu, Sait PY - 2025 DA - August Y2 - 2025 DO - 10.31796/ogummf.1637660 JF - Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi JO - ESOGÜ Müh Mim Fak Derg PB - Eskişehir Osmangazi Üniversitesi WT - DergiPark SN - 2630-5712 SP - 1847 EP - 1853 VL - 33 IS - 2 LA - en AB - The transition to low-carbon economies has heightened the demand for critical metals essential in renewable energy technologies, electric vehicles, and energy storage systems. These metals play a fundamental role in enabling the green technologies required to meet global carbon neutrality targets. However, their extraction, processing, and supply chains introduce environmental, economic, and geopolitical challenges. This study employs the Analytical Hierarchy Process (AHP) to systematically evaluate and prioritize critical metals by considering multiple criteria, including environmental impact, economic viability, resource availability, and technical performance. By integrating expert insights and robust data, the AHP framework provides a comprehensive and structured approach to decision-making in sustainable resource management. The results underscore lithium’s critical role, driven by its favourable environmental and technical properties, followed by cobalt for its strategic relevance despite ethical concerns, nickel for its high energy density, and neodymium for its role in permanent magnet applications. These findings aim to inform policymakers, industry leaders, and stakeholders in making well-grounded decisions that align with sustainable development objectives and facilitate the transition to a low-carbon future. KW - Analytical Hierarchy Process KW - Critical Metals KW - Low-Carbon Economy KW - Sustainable Resource Management N2 - Düşük karbonlu ekonomilere geçiş, yenilenebilir enerji teknolojileri, elektrikli araçlar ve enerji depolama sistemlerinde hayati öneme sahip kritik metallere olan talebi artırmıştır. Bu metaller, küresel karbon nötrlüğü hedeflerine ulaşmak için gerekli yeşil teknolojilerin etkinleştirilmesinde temel bir rol oynamaktadır. Ancak, bu metallerin çıkarılması, işlenmesi ve tedarik zincirleri çevresel, ekonomik ve jeopolitik zorluklar ortaya çıkarmaktadır. Bu çalışma, çevresel etki, ekonomik uygulanabilirlik, kaynak mevcudiyeti ve teknik performans gibi birden fazla kriteri dikkate alarak kritik metalleri sistematik bir şekilde değerlendirmek ve önceliklendirmek için Analitik Hiyerarşi Süreci (AHP) yöntemini kullanmaktadır. Uzman görüşlerini ve güvenilir verileri içeren AHP çerçevesi, sürdürülebilir kaynak yönetimi bağlamında kapsamlı ve yapılandırılmış bir karar alma yaklaşımı sunmaktadır. Bulgular, lityumun hem çevresel hem de teknik açıdan avantajlı özellikleri nedeniyle en kritik metal olduğunu, etik kaygılara rağmen stratejik önemi dolayısıyla kobaltın ikinci sırada yer aldığını, ardından enerji yoğunluğu nedeniyle nikelin ve kalıcı mıknatıs uygulamaları açısından neodimyumun geldiğini ortaya koymaktadır. Bu analiz, politika yapıcılara, sanayiye ve paydaşlara sürdürülebilir kalkınma hedefleriyle uyumlu kararlar almalarında rehberlik etmeyi ve düşük karbonlu bir geleceğe geçişi desteklemeyi amaçlamaktadır. CR - Akinyele, D., & Rayudu, R. (2014). Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments, 8, 74–91. https://doi.org/10.1016/j.seta.2014.07.004 CR - Babbitt, C. W., Althaf, S., Rios, F. C., Bilec, M. M., & Graedel, T. (2021). The role of design in circular economy solutions for critical materials. One Earth, 4(3), 353–362. https://doi.org/10.1016/j.oneear.2021.02.014 CR - Da Silva Lima, L., Quartier, M., Buchmayr, A., Sanjuan-Delmás, D., Laget, H., Corbisier, D., Mertens, J., & Dewulf, J. (2021). Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustainable Energy Technologies and Assessments, 46, 101286. https://doi.org/10.1016/j.seta.2021.101286 CR - Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P., & Reck, B. K. (2015). Criticality of metals and metalloids. Proceedings of the National Academy of Sciences, 112(14), 4257–4262. https://doi.org/10.1073/pnas.1500415112 CR - He, F., Tang, W., Zhang, X., Deng, L., & Luo, J. (2021). High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes. Advanced Materials, 33(45). https://doi.org/10.1002/adma.202105329 CR - Jia, H., Mu, Y., & Qi, Y. (2013). A statistical model to determine the capacity of battery–supercapacitor hybrid energy storage system in autonomous microgrid. International Journal of Electrical Power & Energy Systems, 54, 516–524. https://doi.org/10.1016/j.ijepes.2013.07.025 CR - Koech, A. K., Mwandila, G., Mulolani, F., & Mwaanga, P. (2024). Lithium-ion Battery Fundamentals and Exploration of Cathode Materials: A review. South African Journal of Chemical Engineering, 50, 321–339. https://doi.org/10.1016/j.sajce.2024.09.008 CR - Kursunoglu, N., & Onder, M. (2015). Selection of an appropriate fan for an underground coal mine using the Analytic Hierarchy Process. Tunnelling and Underground Space Technology, 48, 101–109. https://doi.org/10.1016/j.tust.2015.02.005 CR - Kursunoglu, S., Kursunoglu, N., Hussaini, S., & Kaya, M. (2020). Selection of an appropriate acid type for the recovery of zinc from a flotation tailing by the analytic hierarchy process. Journal of Cleaner Production, 283, 124659. https://doi.org/10.1016/j.jclepro.2020.124659 CR - Majeau-Bettez, G., Hawkins, T. R., & Strømman, A. H. (2011). Life cycle environmental assessment of Lithium-Ion and nickel metal hydride batteries for Plug-In Hybrid and Battery Electric vehicles. Environmental Science & Technology, 45(10), 4548–4554. https://doi.org/10.1021/es103607c CR - Mancini, L., Eslava, N. A., Traverso, M., & Mathieux, F. (2021). Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study. Resources Policy, 71, 102015. https://doi.org/10.1016/j.resourpol.2021.102015 CR - Manthiram, A., Song, B., & Li, W. (2016). A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 6, 125–139. https://doi.org/10.1016/j.ensm.2016.10.007 CR - Petrova, V. (2023). Exploring the Opportunities for Sustainable Management of Critical Raw Materials in the Circular Economy. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 26, 664–671. https://doi.org/10.55549/epstem.1412475 CR - Ponomareva, N., Sheen, J., & Wang, B. Z. (2024). Metal and energy price uncertainties and the global economy. Journal of International Money and Finance, 143, 103044. https://doi.org/10.1016/j.jimonfin.2024.103044 CR - Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/ijssci.2008.017590 CR - Schäfer, B., Gasparon, M., & Storm, P. (2020). European Raw Materials Alliance—a new initiative to increase raw material resilience for a greener Europe. Mineral Economics, 33(3), 415–416. https://doi.org/10.1007/s13563-020-00241-4 CR - Sovacool, B. K., Ali, S. H., Bazilian, M., Radley, B., Nemery, B., Okatz, J., & Mulvaney, D. (2020). Sustainable minerals and metals for a low-carbon future. Science, 367(6473), 30–33. https://doi.org/10.1126/science.aaz6003 CR - Sverdrup, H., & Ragnarsdóttir, K. V. (2014). Natural Resources in a Planetary Perspective. Geochemical Perspectives, 129–341. https://doi.org/10.7185/geochempersp.3.2 CR - Yang, C., Zhang, J., Cao, Z., Jing, Q., Chen, Y., & Wang, C. (2020). Sustainable and Facile Process for Lithium Recovery from Spent LiNixCoyMnzO2 Cathode Materials via Selective Sulfation with Ammonium Sulfate. ACS Sustainable Chemistry & Engineering, 8(41), 15732–15739. https://doi.org/10.1021/acssuschemeng.0c05676 UR - https://doi.org/10.31796/ogummf.1637660 L1 - https://dergipark.org.tr/tr/download/article-file/4599810 ER -