TY - JOUR T1 - Hematopoetik Kök Hücrelerin Kemik Metastazındaki Rolü: Hayvan Modellerinde Tümör Gelişimi Üzerindeki Etkisi TT - The Role of Hematopoietic Stem Cells in Bone Metastasis: Effects on Tumor Progression in Animal Models AU - Aydın, Veli Kaan PY - 2025 DA - June Y2 - 2025 DO - 10.20515/otd.1637816 JF - Osmangazi Tıp Dergisi PB - Eskişehir Osmangazi Üniversitesi WT - DergiPark SN - 1305-4953 SP - 523 EP - 531 VL - 47 IS - 4 LA - tr AB - Meme kanseri tedavi edilebilir olmasına rağmen metastatik formu, kadınlarda kanser kaynaklı ölümlerin ikinci en sık nedenidir. Meme kanseri sıklıkla kemik metastazı yapar; ancak bu sürecin biyolojik mekanizmaları tam olarak açıklığa kavuşmamıştır. Literatürde, hematopoetik kök hücrelerin (HKH) metastatik nişte önemli bir rol oynayabileceği ve kanser hücreleri ile benzer mikro çevresel sinyallere yanıt verebileceği öne sürülmektedir. Bu durum, HKH’lerin ve kanser hücrelerinin kemik iliğinde ortak bir niş paylaşabileceğini ve rekabet halinde olabileceklerini düşündürmektedir. Bu hipotez doğrultusunda, HKH’lerin ortamdan uzaklaştırılması durumunda meme kanseri hücrelerinin endosteal nişe daha fazla yerleştiği gözlemlenmiştir. Ancak, bu sürecin tümör gelişimi üzerindeki etkileri ve klinik yansımaları henüz netlik kazanmamıştır. Bu çalışmada, HKH mobilizasyonunun tümör gelişimine etkilerini incelemek amacıyla bağışıklığı baskılanmış ksenograft ve eş genetik (syngeneik) tümör modelleri kullanılmıştır. İlk olarak, BALB/c Nude farelerine 5 gün boyunca AMD3100 (CXCR4 antagonisti) uygulandıktan sonra MDA-MB-231 hücreleri intrakardiyak yol ile enjekte edilerek metastatik bir model oluşturulmuş ve tümör gelişimi in-vivo görüntüleme (IVIS) yöntemiyle takip edilmiştir. Daha sonra, BALB/c ve C57BL/6j farelerinde AMD3100 ve G-CSF kullanılarak HKH mobilizasyonu syngeneik model seçimi amacıyla gerçekleştirilmiş; yapılan koloni analizleri sonucunda en verimli mobilizasyonun BALB/c–G-CSF kombinasyonu ile gerçekleştiği belirlenmiştir. Bu bulgu sonucunda ksenograft çalışmasına benzer bir syngeneik model 4T1 fare meme kanserinin G-CSF uygulamasından sonra intrakardiyak enjeksiyonuyla oluşturulmuş ve tümör gelişimi IVIS yöntemiyle takip edilmiştir. Deney sonuçları, her iki modelde de HKH mobilizasyonunun tümör oluşumunu hızlandırdığını, ancak ilerleyen hastalık süreci ve diğer organ metastazları üzerinde belirgin bir etkisi olmadığını göstermiştir. Bulgular, HKH’lerin kemik metastazındaki kritik rolünü vurgulamakta ve bu hücrelerin metastatik sürecin yönetiminde potansiyel terapötik hedefler olabileceğini göstermektedir. KW - Hematopoetik Kök Hücreler KW - Meme Kanseri KW - Hayvan Modeli KW - Mobilizasyon KW - Kemik Metastazı N2 - Despite being a treatable disease, metastatic breast cancer remains the second leading cause of cancer-related mortality among women. It frequently spreads to the bone, yet the precise biological mechanisms underlying this process are not fully understood. Literature suggests that hematopoietic stem cells (HSCs) play a key role in the metastatic niche, responding to microenvironmental cues similar to cancer cells. This interaction implies potential competition between HSCs and cancer cells for the bone marrow niche. Accordingly, HSC depletion has been shown to enhance the colonization of breast cancer cells in the endosteal niche, though its impact on tumor progression and clinical outcomes remains uncertain. This study explored the effects of HSC mobilization on tumor progression using both immunocompromised (xenograft) and immunocompetent (syngeneic) mouse models. BALB/c Nude mice received AMD3100 (CXCR4 antagonist) for five days, followed by intracardiac injection of MDA-MB-231 cells to establish a metastatic model, with tumor progression tracked with in vivo imaging (IVIS). Additionally, HSC mobilization was induced in BALB/c and C57BL/6j mice using AMD3100 and G-CSF, identifying BALB/c–G-CSF as the most effective combination. A syngeneic model was then developed using intracardiac injection of 4T1 mouse breast cancer cells, mimicking the xenograft approach. Results revealed that HSC mobilization accelerated tumor formation in both models but did not significantly affect disease progression or metastasis to other organs. These findings underscore the critical role of HSCs in bone metastasis and suggest their potential as therapeutic targets in metastatic breast cancer. CR - 1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74:229–63. CR - 2. Bussard KM, Gay C V, Mastro AM. The bone microenvironment in metastasis; what is special about bone? Cancer and Metastasis Reviews 2008;27:41–55. CR - 3. Zhao H, Guo L, Zhao H, Zhao J, Weng H, Zhao B. CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget 2015;6:5022–40. CR - 4. Shiozawa Y, Pienta KJ, Taichman RS. Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clinical Cancer Research 2011;17:5553–8. CR - 5. Winkler IG, Pettit AR, Raggatt LJ, Jacobsen RN, Forristal CE, Barbier V, et al. Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 2012;26:1594–601. CR - 6. Forest AE, Shiozawa Y, Pienta KJ, Taichman RS. The Hematopoietic Stem Cell Niche and Bone Metastasis. Madame Curie Bioscience Database [Internet] Austin (TX): Landes Bioscience 2013. https://www.ncbi.nlm.nih.gov/books/NBK169225/ (accessed October 4, 2020). CR - 7. Hiraga T. Bone metastasis: Interaction between cancer cells and bone microenvironment. J Oral Biosci 2019;61:95–8. CR - 8. Allocca G, Hughes R, Wang N, Brown HK, Ottewell PD, Brown NJ, et al. The bone metastasis niche in breast cancer-potential overlap with the haematopoietic stem cell niche in vivo. J Bone Oncol 2019;17. CR - 9. Jung Y, Wang J, Song J, Shiozawa Y, Wang J, Havens A, et al. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 2007;110:82–90. CR - 10. Schuettpelz LG, Link DC. Niche competition and cancer metastasis to bone. Journal of Clinical Investigation 2011;121:1253–5. https://doi.org/10.1172/JCI57229. CR - 11. Decker AM, Jung Y, Cackowski F, Taichman RS. The role of hematopoietic stem cell niche in prostate cancer bone metastasis. J Bone Oncol 2016;5:117–20. CR - 12. Rosenkilde MM, Gerlach L-OO, Jakobsen JS, Skerlj RT, Bridger GJ, Schwartz TW. Molecular Mechanism of AMD3100 Antagonism in the CXCR4 Receptor: TRANSFER OF BINDING SITE TO THE CXCR3 RECEPTOR*. Journal of Biological Chemistry 2004;279:3033–41. CR - 13. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clinical Cancer Research 2010;16:2927–31. CR - 14. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002;3:687–94. CR - 15. Holen I, Nutter F, Wilkinson JM, Evans CA, Avgoustou P, Ottewell PD. Human breast cancer bone metastasis in vitro and in vivo: a novel 3D model system for studies of tumour cell-bone cell interactions. Clin Exp Metastasis 2015;32:689–702. CR - 16. Canuas-Landero VG, George CN, Lefley D V, Corness H, Muthana M, Wilson C, et al. Oestradiol Contributes to Differential Antitumour Effects of Adjuvant Zoledronic Acid Observed Between Pre- and Post-Menopausal Women . Frontiers in Endocrinology 2021;12. CR - 17. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016;7:27–31. CR - 18. Patterson AM, Pelus LM. G-CSF in stem cell mobilization: new insights, new questions. Ann Blood 2016;2:10–10. CR - 19. Hoggatt J, Tate TA, Pelus LM. Hematopoietic Stem and Progenitor Cell Mobilization in Mice, 2014, p. 43–64. CR - 20. Koç Ö, Doğan Ö, Şahin U, Kircali E, Koyun D, Arat M, et al. The effects of plerixafor on the hemostatic system in patients undergoing stem cell mobilization. Hematol Oncol Stem Cell Ther 2024;17:211–8. CR - 21. Gokarn A, Reddy L, Hiregoudar S, Poojary M, Parab S, Punatar S, et al. A comparison of mobilization regimens used in Hodgkin lymphoma and factors that influence peripheral blood stem cell mobilization. Cytotherapy 2025. CR - 22. Weng P, Yang S, Xu S, Zhang S, Wu Y, Chen Y. Application of G-CSF in high-leukocyte acute myeloid leukemia is a poor prognostic factor. Hematology 2023;28. CR - 23. Liu T, Li X, You S, Bhuyan SS, Dong L. Effectiveness of AMD3100 in treatment of leukemia and solid tumors: from original discovery to use in current clinical practice. Exp Hematol Oncol 2015;5:19. CR - 24. Wright LE, Ottewell PD, Rucci N, Peyruchaud O, Pagnotti GM, Chiechi A, et al. Murine models of breast cancer bone metastasis. Bonekey Rep 2016;5:804. CR - 25. Ottewell PD, Lawson MA. Advances in murine models of breast cancer bone disease. J Cancer Metastasis Treat 2021;7:11. CR - 26. Ottewell PD, Coleman RE, Holen I. From genetic abnormality to metastases: Murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res Treat 2006;96:101–13. CR - 27. Sugiyama T, Nagasawa T. Bone marrow niches for hematopoietic stem cells and immune cells. Inflamm Allergy Drug Targets 2012;11:201–6. CR - 28. Alsamraae M, Cook LM. Emerging roles for myeloid immune cells in bone metastasis. Cancer Metastasis Rev 2021;40:413–25. CR - 29. Lee H, Che J-H, Oh JE, Chung SS, Jung HS, Park KS. Bone marrow stem/progenitor cell mobilization in C57BL/6J and BALB/c mice. Lab Anim Res 2014;30:14–20. UR - https://doi.org/10.20515/otd.1637816 L1 - https://dergipark.org.tr/tr/download/article-file/4600468 ER -