TY - JOUR T1 - Applications of additive manufacturing technologies in the production of boron-based ceramics TT - Bor tabanlı seramik üretiminde eklemeli üretim teknolojilerinin uygulamaları AU - Kalay, Ece AU - Özkul, İskender PY - 2025 DA - September Y2 - 2025 DO - 10.30728/boron.1639273 JF - Journal of Boron PB - TENMAK Bor Araştırma Enstitüsü WT - DergiPark SN - 2149-9020 SP - 95 EP - 110 VL - 10 IS - 3 LA - en AB - Boron-based refractory ceramics, particularly boron carbide (B4C) and boron nitride (BN), play a critical role in applications such as nuclear energy, defense, and aerospace due to their exceptional properties, including high hardness, thermal stability, and chemical inertness. While traditional manufacturing methods limit the potential of these materials, additive manufacturing (AM) technologies offer innovative solutions to overcome these constraints. Methods such as stereolithography (SLA), binder jetting, and selective laser sintering (SLS) enable the production of high-performance parts with complex geometries, reducing material waste and increasing design flexibility. This review examines the recent advancements in the AM production of boron-based ceramics and highlights future research directions and industrial potential. Furthermore, the development of sustainable and cost-effective manufacturing methods will facilitate broader use of these materials in high-performance applications. KW - 3D printing KW - additive manufacturing KW - Aerospace applications KW - Boron based ceramics KW - Innovative materials KW - Thermal stability N2 - Bor esaslı refrakter seramikler, özellikle bor karbür (B4C) ve bor nitrür (BN), yüksek sertlik, termal kararlılık ve kimyasal inertlik gibi olağanüstü özellikleri nedeniyle nükleer enerji, savunma ve havacılık gibi uygulamalarda kritik bir rol oynamaktadır. Geleneksel üretim yöntemleri bu malzemelerin potansiyelini sınırlarken, eklemeli imalat (Eİ) teknolojileri bu kısıtlamaların üstesinden gelmek için yenilikçi çözümler sunmaktadır. Stereolitografi (SLA), bağlayıcı püskürtme ve seçici lazer sinterleme (SLS) gibi yöntemler, karmaşık geometrilere sahip yüksek performanslı parçaların üretimini sağlayarak malzeme israfını azaltmakta ve tasarım esnekliğini artırmaktadır. Bu inceleme, bor esaslı seramiklerin Eİ ile üretimindeki son gelişmeleri incelemekte ve gelecekteki araştırma yönlerini ve endüstriyel potansiyeli vurgulamaktadır. Ayrıca, sürdürülebilir ve uygun maliyetli üretim yöntemlerinin geliştirilmesi, bu malzemelerin yüksek performanslı uygulamalarda daha yaygın kullanımını kolaylaştıracaktır. CR - Domnich, V., Reynaud, S., Haber, R.A., & Chhowalla, M. (2011). Boron carbide: Structure, properties, and stability under stress. Journal of the American Ceramic Society, 94(11), 3605-3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x CR - Zhang, W., Yamashita, S., & Kita, H. (2019). Progress in pressureless sintering of boron carbide ceramics-a review. Advances in Applied Ceramics, 118(4), 222-239. https://doi.org/10.1080/17436753.2019.1574285 CR - Ly, M., Spinelli, S., Hays, S., & Zhu, D. (2022). 3D printing of ceramic biomaterials. Engineered Regeneration, 3(1), 41-52. https://doi.org/10.1016/j.engreg.2022.01.006 CR - Mansfield, B., Torres, S., Yu, T., & Wu, D. (2019). A review on additive manufacturing of ceramics. Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. ASME. https://doi.org/10.1115/MSEC2019-2886 CR - Velu Kaliyannan, G., Rathanasamy, R., Gunasekaran, R., Sivaraj, S., Kandasamy, S., & Krishna Rao, S. (2024). Preparation of ceramics: Different approaches. Engineering Materials, 53-86. https://doi.org/10.1007/978-981-97-9018-0_3 CR - Costakis Jr., W. J., Rueschhoff, L. M., Diaz-Cano, A. I., Youngblood, J. P., & Trice, R. W. (2016). Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. Journal of the European Ceramic Society, 36(14), 3249-3256. https://doi.org/10.1016/j.jeurceramsoc.2016.06.002 CR - Nazari, K., Tran, P., Tan, P., Ghazlan, A., Ngo, T. D., & Xie, Y. M. (2023). Advanced manufacturing methods for ceramic and bioinspired ceramic composites: A review. Open Ceramics, 15, 100399. https://doi.org/10.1016/j.oceram.2023.100399 CR - Martínez-García, A., Monzón, M. & Paz, R. (2021). Standards for additive manufacturing technologies: Structure and impact. In J. Pou, A. Riveiro, & J. P. Davim (Eds.), Additive Manufacturing (pp. 395-408). Elsevier. https://doi.org/10.1016/B978-0-12-818411-0.00013-6 CR - Suri, A., Subramanian, C., Sonber, J., & Murthy, T. C. (2010). Synthesis and consolidation of boron carbide: A review. International Materials Reviews, 55(1), 4-40. https://doi.org/10.1179/095066009X12506721665211 CR - Zhang, F., Li, Z., Xu, M., Wang, S., Li, N., & Yang, J. (2022). A review of 3D printed porous ceramics. Journal of the European Ceramic Society, 42(8), 3351-3373. https://doi.org/10.1016/j.jeurceramsoc.2022.02.039 CR - Das, S., Sozal, M. S. I., Li, W., & John, D. (2023). Ultra-high-temperature ceramic coatings ZrC, ZrB2, HfC, and HfB2. In A. Pakseresht, K. Kirubaharan, & A. Mosas (Eds.), Ceramic Coatings for High-Temperature Environments: From Thermal Barrier to Environmental Barrier Applications (pp. 441-469). Springer. https://doi.org/10.1007/978-3-031-40809-0_14 CR - Kuliiev, R. (2020). Mechanical properties of boron carbide (B4C). [Master's Thesis, University of Central Florida]. https://doi.org/10.13140/RG.2.2.32343.24483 CR - Sola, A., & Trinchi, A. (2023). Boron-induced microstructural manipulation of titanium and titanium alloys in additive manufacturing. Virtual and Physical Prototyping, 18(1), e2230467. https://doi.org/10.1080/17452759.2023.2230467 CR - Vozárová, M., Neubauer, E., Bača, Ľ., Kitzmantel, M., Feranc, J., Trembošová, V., … & Janek, M. (2023). Preparation of fully dense boron carbide ceramics by Fused Filament Fabrication (FFF). Journal of the European Ceramic Society, 43(5), 1751-1761. https://doi.org/10.1016/j.jeurceramsoc.2022.12.018 CR - Eichler, J., & Lesniak, C. (2008). Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society, 28(5), 1105-1109. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005 CR - Bai, S., Lee, H. J., & Liu, J. (2020). 3D printing with mixed powders of boron carbide and Al alloy. Applied Sciences, 10(9), 3055. https://doi.org/10.3390/app10093055 CR - Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert- Demut, I., Schlier, L., … & Greil, P. (2014). Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 16(6), 729-754. https://doi.org/10.1002/adem.201400097 CR - Zocca, A., Colombo, P., Gomes, C. M., & Günster, J. (2015). Additive manufacturing of ceramics: Issues, potentialities, and opportunities. Journal of the American Ceramic Society, 98(7), 1983-2001. https://doi.org/10.1111/jace.13700 CR - Liu, G., Chen, S., Zhao, Y., Fu, Y., & Wang, Y. (2020). The effects of transition metal oxides (Me= Ti, Zr, Nb, and Ta) on the mechanical properties and interfaces of B4C ceramics fabricated via pressureless sintering. Coatings, 10(12), 1253. https://doi.org/10.3390/coatings10121253 CR - Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O., Gachechiladze, A., Oakley, A., & Margiev, B. (2018). Boron-containing nanocrystalline ceramic and metal-ceramic materials. In C. M. Hussain (Ed.), Handbook of Nanomaterials for Industrial Applications (pp. 13-35). Elsevier. https://doi.org/10.1016/B978-0-12-813351-4.00002-X CR - Bauman, Z. (2019). hBN-acrylate composite printing:Stereolithography and UV-assisted direct write. [Master's thesis, University of Connecticut] CR - Lakusta, M. (2024). Processing-microstructure-properties relationships in additively manufactured Zrb2- Sic ceramics. [Doctoral dissertation, Missouri University of Science and Technolog] CR - Stewart, D. M. (2016). Zirconium diboride, hexagonal boron nitride, and amorphous alumina thin films for high temperature applications. [Doctoral dissertation, University of Maine] CR - Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., … & He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39(4), 661-687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013 CR - Wahl, L., Schmiedeke, S., Knorr, M., Schneider, I., & Travitzky, N. (2022). Fabrication of reaction-bonded boron carbide-based composites by binder jetting 3D printing. Ceramics, 5(4), 1167-1173. https://doi.org/10.3390/ceramics5040082 CR - Mostafaei, A., Elliott, A. M., Barnes, J. E., Li, F., Tan, W., Cramer, C. L., … & Chmielus, M. (2021). Binder jet 3D printing-Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, 100707. https://doi.org/10.1016/j.pmatsci.2020.100707 CR - Sharma, S. (2022). Boron nitride nanostructures: Synthesis, characterization, and application in photovoltaics and biomedicine. [Doctoral dissertation, Michigan Technological University] CR - Zhi, C., Bando, Y., Terao, T., Tang, C., Kuwahara, H., & Golberg, D. (2009). Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials, 19(12), 1857-1862. https://doi.org/10.1002/adfm.200801435 CR - Liu, Y., Jiang, D., Hessien, M. M., Mahmoud, M., Xu, M., & El-Bahy, Z. M. (2024). Enhanced thermal and mechanical properties of boron-modified phenolic resin composites with multifiller system for aerospace applications. Advanced Composites and Hybrid Materials, 7, 180. https://doi.org/10.1007/s42114-024-00961-z CR - Luo, W., Wang, Y., Hitz, E., Lin, Y., Yang, B., & Hu, L. (2017). Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Advanced Functional Materials, 27(31), 1701450. https://doi.org/10.1002/adfm.201701450 CR - Terao, T., Bando, Y., Mitome, M., Zhi, C., Tang, C., & Golberg, D. (2009). Thermal conductivity improvement of polymer films by catechin-modified boron nitride nanotubes. The Journal of Physical Chemistry C, 113(31), 13605-13609. https://doi.org/10.1021/jp903159s CR - Ciofani, G., Raffa, V., Yu, J., Chen, Y., Obata, Y., Takeoka, S., … & Cuschieri, A. (2009). Boron nitride nanotubes: A novel vector for targeted magnetic drug delivery. Current Nanoscience, 5(1), 33-38. https://doi.org/10.2174/157341309787314557 CR - Huang, Y., Lin, J., Bando, Y., Tang, C., Zhi, C., Shi, Y., … & Golberg, D. (2010). BN nanotubes coated with uniformly distributed Fe3O4 nanoparticles: Novel magneto-operable nanocomposites. Journal of Materials Chemistry, 20(5), 1007-1011. https://doi.org/10.1039/B916971G CR - Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z., Zettl, A., & Bertozzi, C. R. (2009). Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Journal of the American Chemical Society, 131(3), 890-891. https://doi.org/10.1021/ja807334b CR - Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., & Zhi, C. (2010). Boron nitride nanotubes and nanosheets. ACS Nano, 4(6), 2979-2993. https://doi.org/10.1021/nn1006495 CR - Wang, Y., Liu, Q., Zhang, B., Wang, H., Hazell, P.J., Li, B., … & Ye, F. (2023). Improved ballistic performance of a continuous-gradient B4C/Al composite inspired by nacre. Materials Science and Engineering: A, 874, 145071. https://doi.org/10.1016/j.msea.2023.145071 CR - Tammana, S. M., Sonber, J., Sairam, K., Majumdar, S., & Kain, V. (2019). Boron-based ceramics and composites for nuclear and space applications: Synthesis and consolidation. In M. Y, & R. J (Eds.), Handbook of advanced ceramics and composites (pp. 1-36). Springer Nature. https://doi.org/10.1007/978-3-319-73255-8_22-1 CR - Tului, M., Lionetti, S., Pulci, G., Marra, F., Tirillò, J., & Valente, T. (2010). Zirconium diboride based coatings for thermal protection of re entry vehicles: Effect of MoSi2 addition. Surface and Coatings Technology, 205(4), 1065-1069. https://doi.org/10.1016/j.surfcoat.2010.07.120 CR - Raju, G., Basu, B., Tak, N., & Cho, S. (2009). Temperature dependent hardness and strength properties of TiB2 with TiSi2 sinter-aid. Journal of the European Ceramic Society, 29(10), 2119-2128. https://doi.org/10.1016/j.jeurceramsoc.2008.11.018 CR - Padamata, S. K., Singh, K., Haarberg, G. M., & Saevarsdottir, G. (2022). Wettable TiB2 cathode for aluminum electrolysis: A review. Journal of Sustainable Metallurgy, 8(2), 613-624. https://doi.org/10.1007/s40831-022-00526-8 CR - Moghadamian, S. R., Esfahani, H., Lin, N., & Nouri, M. (2024). Development of high hard TiB-TiB2 coatings on Ti implants for bio-tribological applications; Applying Box- Behnken design and actual wear analyzing in simulated body fluids. Results in Surfaces and Interfaces, 16, 100276. https://doi.org/10.1016/j.rsurfi.2024.100276 CR - Chen, W., Wenhui, H., Zhao, Z., He, N., Xiuqing, L., & Li, H. (2021). Mechanical properties and tribological characteristics of B4C-SiC ceramic composite in artificial seawater. Journal of Asian Ceramic Societies, 9(4), 1495-1505. https://doi.org/10.1080/21870764.202 1.1986202 CR - da Rocha, R. M., & de Melo, F. C. (2009). Pressureless sintering of B4C-SiC composites for armor applications. Ceramic Engineering and Science Proceedings, 30(5), 113-119. https://doi.org/10.1002/9780470584330.ch11 CR - Savio, S., Rao, A. S., Reddy, P. R. S., & Madhu, V. (2019). Microstructure and ballistic performance of hot pressed & reaction bonded boron carbides against an armour piercing projectile. Advances in Applied Ceramics, 118(5), 264-273. https://doi.org/10.1080/17436753.2018.1564416 CR - Wang, T., Ni, C., & Karandikar, P. (2016). Microstructural characteristics of reaction-bonded B4C/SiC composite. In S. J. Ikhmayies, B. Li, J. S. Carpenter, J.-Y. Hwang, S. N. Monteiro, J Li, D. Firrao, M. Zhang, Z. Peng, J. P. Escobedo-Diaz, & C. Bai (Eds.) Characterization of Minerals, Metals, and Materials 2016 (pp. 279-286). Springer Nature. https://doi.org/10.1007/978-3-319-48210-1_34 CR - Innocent, J.-L., Portehault, D., Gouget, G., Maruyama, S., Ohkubo, I., & Mori, T. (2017). Thermoelectric properties of boron carbide/HfB 2 composites. Materials for Renewable and Sustainable Energy, 6(6). https://doi.org/10.1007/s40243-017-0090-8 CR - Feng, B., Martin, H. P., Börner, F. D., Lippmann, W., Schreier, M., Vogel, K., … & Richter, C. (2014). Manufacture and testing of thermoelectric modules consisting of BxC and TiOx elements. Advanced Engineering Materials, 16(10), 1252-1263. https://doi.org/10.1002/adem.201400183 CR - Kakiage, M., Tahara, N., Yanase, I. & Kobayashi, H. (2011). Low-temperature synthesis of boron carbide powder from condensed boric acid-glycerin product. Materials Letters, 65(12), 1839-1841. https://doi.org/10.1016/j.matlet.2011.03.046 CR - Khasanov, O. L., Dvilis, E. S., Bikbaeva, Z. G., Polisadova, V. V., Khasanov, A. O., Petukevich, М. S., & Milovanova, T. V. (2015). Influence of physical properties of B4C powder on the strength properties of the ceramics manufactured by SPS sintering. Advanced Materials Research, 1085, 312-315. https://doi.org/10.12794/metadc1538698 CR - Aizenshtein, M., Froumin, N., & Frage, N. (2014). Experimental study and thermodynamic analysis of high temperature interactions between boron carbide and liquid metals. Engineering, 6(13), 849. https://doi.org/10.4236/eng.2014.613079 CR - Basu, B., Raju, G., & Suri, A. (2006). Processing and properties of monolithic TiB2 based materials. International Materials Reviews, 51(6), 352-374. https://doi.org/10.1179/174328006X102529 CR - Königshofer, R., Fürnsinn, S., Steinkellner, P., Lengauer, W., Haas, R., Rabitsch, K., & Scheerer, M. (2005). Solid-state properties of hot-pressed TiB2 ceramics. International Journal of Refractory Metals and Hard Materials, 23(4-6), 350-357. https://doi.org/10.1016/j.ijrmhm.2005.05.006 CR - Ferber, M. K., Becher, P. F. & Finch, C. B. (1983). Effect of microstructure on the properties of TiB2 ceramics. Journal of the American Ceramic Society, 66(1), C-2-C-3. https://doi.org/10.1111/j.1151-2916.1983.tb09974.x CR - Asl, M. S., Nayebi, B., Ahmadi, Z., Zamharir, M. J. &, Shokouhimehr, M. (2018). Effects of carbon additives on the properties of ZrB2-based composites: A review. Ceramics International, 44(7), 7334-7348. https://doi.org/10.1016/j.ceramint.2018.01.214 CR - Zhang, L., Pejaković, D. A., Marschall, J., & Gasch, M. (2011). Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramics. Journal of the American Ceramic Society, 94(8), 2562-2570. https://doi.org/10.1111/j.1551-2916.2011.04411.x CR - Zimmermann, J. W., Hilmas, G. E., Fahrenholtz, W. G., Dinwiddie, R. B., Porter, W. D., & Wang, H. (2008). Thermophysical properties of ZrB2 and ZrB2-SiC ceramics. Journal of the American Ceramic Society, 91(5), 1405-1411. https://doi.org/10.1111/j.1551-2916.2008.02268.x CR - Kaufman, S. (1964). Fabrication development of boron carbide and boron carbide + silicon carbide mixtures for possible application as lumped burnable poisons in PWR-2. Office of Scientific and Technical Information, U.S. Department of Energy. https://www.osti.gov/biblio/4055216 CR - Dutto, M., Goeuriot, D., Saunier, S., Sao-Joao, S., Marinel, S., Frage, N., & Hayun, S. (2020). The effect of microwave heating on the microstructure and the mechanical properties of reaction-bonded boron carbide. International Journal of Applied Ceramic Technology, 17(2), 751-760. https://doi.org/10.1111/ijac.13379 CR - Kaliyannan, G. V., Rathanasamy, R., Gunasekaran, R., Sivaraj, S., Kandasamy, S., & Rao, S. K. Preparation of ceramics: Different approaches. In: U. Kumar (Eds.), Defects engineering in electroceramics for energy applications, 53-86. https://doi.org/10.1007/978-981-97-9018-0_3 CR - Haubner, R., Wilhelm, M., Weissenbacher, R., & Lux, B. (2002). Boron nitrides-properties, synthesis and applications. In M. Jansen (Eds.), High performance non-oxide ceramics II. Structure and bonding (Vol. 102). Springer. https://doi.org/10.1007/3-540-45623-6_1 CR - Mirzayev, M., Abiyev, A., Samedov, O., Demir, E., Popov, E., & Samadov, S. (2024). Structural evolution of zirconium diboride under gamma irradiation and thermal annealing. Journal of Alloys and Compounds, 1005, 175970. https://doi.org/10.1016/j.jallcom.2024.175970 CR - Zhang, J., Ke, W., Ji, W., Fan, Z., Wang, W., & Fu, Z. (2015). Microstructure and properties of insitu titanium boride (TiB)/titanium (TI) composites. Materials Science and Engineering: A, 648, 158-163. https://doi.org/10.1016/j.msea.2015.09.067 CR - He, D., Zhao, Y., Daemen, L., Qian, J., Shen, T., & Zerda, T. (2002). Boron suboxide: As hard as cubic boron nitride. Applied Physics Letters, 81(4), 643-645. https://doi.org/10.1063/1.1494860 CR - Taniguchi, T., & Watanabe, K. (2007). Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. Journal of Crystal Growth, 303(2), 525-529. https://doi.org/10.1016/j.jcrysgro.2006.12.061 CR - Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. https://doi.org/10.1107/S0021889811038970 CR - Wentorf, R. (1957). Cubic form of boron nitride. The Journal of Chemical Physics, 26(4), 956-956. https://doi.org/10.1063/1.1745964 CR - Knittle, E., Kaner, R., Jeanloz, R., & Cohen, M. (1995). High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Physical Review B, 51(18), 12149. https://doi.org/10.1103/PhysRevB.51.12149 CR - Thevenot, F. (1990). Boron carbide-a comprehensive review. Journal of the European Ceramic Society, 6(4), 205-225. https://doi.org/10.1016/0955-2219(90)90048-K CR - Amirsalar K., N.O. (2017). Novel nanocomposite ceramic scaffold fabricated via 3D printing for cancer therapy application, (523-524). 15th Conference & Exhibition of the European Ceramic Society. ECerS2017. CR - Yen, H. C. (2015). Experimental studying on development of slurry-layer casting system for additive manufacturing of ceramics. The International Journal of Advanced Manufacturing Technology, 77, 915-925. https://doi.org/10.1007/s00170-014-6534-8 CR - Wang, Y., Bu, Y., & Wang, X. (2024). Advances in 3D printing of structural and functional ceramics: Technologies, properties, and applications. Journal of the European Ceramic Society, 44(14), 116653. https://doi.org/10.1016/j.jeurceramsoc.2024.05.075 CR - Liu, X., Zou, B., Xing, H., & Huang, C. (2020). The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceramics International, 46(1), 937-944. https://doi.org/10.1016/j.ceramint.2019.09.054 CR - Dadkhah, M., Tulliani, J. M., Saboori, A., & Iuliano, L. (2023). Additive manufacturing of ceramics: Advances, challenges, and outlook. Journal of the European Ceramic Society, 43(15), 6635-6664. https://doi.org/10.1016/j.jeurceramsoc.2023.07.033 CR - Wakai, F., Okuma, G., & Nishiyama, N. (2019). Sintering mechanics of ceramics: A short review. Materials Today: Proceedings, 16(1), 4-13. https://doi.org/10.1016/j.matpr.2019.05.304 CR - Rahaman, M. N. (2017). Ceramic processing and sintering (2nd. ed). CRC Press. https://doi.org/10.1201/9781315274126 CR - German, R. M. (1996). Sintering theory and practice. Wiley CR - Lange, F. F. (1989). Powder processing science and technology for increased reliability. Journal of the American Ceramic Society, 72(1), 3-15. https://doi.org/10.1111/j.1151-2916.1989.tb05945.x CR - Richerson, D. W., & Lee, W. E. (2018). Modern ceramic engineering: Properties, processing, and use in design (4th ed). CRC Press. https://doi.org/10.1201/9780429488245 CR - Mühler, T., Gomes, C. M., Heinrich, J., & Günster, J. (2015). Slurry-based additive manufacturing of ceramics. International Journal of Applied Ceramic Technology, 12(1), 18-25. https://doi.org/10.1111/ijac.12113 CR - Fedorchenko, I. (2009). Shrinkage of metal ceramic briquettes during sintering. Powder Metallurgy and Metal Ceramics, 48, 497-507. https://doi.org/10.1007/s11106-010-9159-y CR - Wang, K., Qiu, M., Jiao, C., Gu, J., Xie, D., Wang, C., … & Shen, L. (2020). Study on defect-free debinding green body of ceramic formed by DLP technology. Ceramics International, 46(2), 2438-2446. https://doi.org/10.1016/j.ceramint.2019.09.237 CR - Liu, Q., & Zhai, W. (2022). Hierarchical porous ceramics with distinctive microstructures by emulsion-based direct ink writing. ACS Applied Materials & Interfaces, 14(28), 32196-32205. https://doi.org/10.1021/acsami.2c03245 CR - Zirak, N., Shirinbayan, M., Benfriha, K., Deligant, M., & Tcharkhtchi, A. (2022). Stereolithography of (meth) acrylate-based photocurable resin: Thermal and mechanical properties. Journal of Applied Polymer Science, 139(22), 52248. https://doi.org/10.1002/app.52248 CR - Corbin, S. F., Lee, J., & Qiao, X. (2001). Influence of green formulation and pyrolyzable particulates on the porous microstructure and sintering characteristics of tape cast ceramics. Journal of the American Ceramic Society, 84(1), 41-47. https://doi.org/10.1111/j.1151-2916.2001.tb00605.x CR - Belon, R., Antou, G., Pradeilles, N., Maître, A., & Gosset, D. (2017). Mechanical behaviour at high temperature of spark plasma sintered boron carbide ceramics. Ceramics International, 43(8), 6631-6635. https://doi.org/10.1016/j.ceramint.2017.02.053 CR - Liu, Y., Ge, S., Huang, Y., Huang, Z., & Zhang, D. (2021). Influence of sintering process conditions on microstructural and mechanical properties of boron carbide ceramics synthesized by spark plasma sintering. Materials, 14(5), 1100. https://doi.org/10.3390/ma14051100 CR - Ji, W., Rehman, S. S., Wang, W., Wang, H., Wang, Y., Zhang, J., … & Fu, Z. (2015). Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism. Scientific Reports, 5, 15827. https://doi.org/10.1038/srep15827 CR - Diaz-Cano, A., Trice, R. W., & Youngblood, J. P. (2017). Stabilization of highly-loaded boron carbide aqueous suspensions. Ceramics International, 43(12), 8572- 8578. https://doi.org/10.1016/j.ceramint.2017.03.111 CR - Zeng, X., & Liu, W. (2016). Aqueous tape casting of B4C ceramics. Advances in Applied Ceramics, 115(4), 224- 228. https://doi.org/10.1080/17436753.2015.1126935 CR - Zheng, J.-C., Zhang, L., Kretinin, A.V., Morozov, S.V., Wang, Y.B., Wang, T., … & Lu, C.-Y. (2016). High thermal conductivity of hexagonal boron nitride laminates. 2D Materials, 3(1), 011004. https://doi.org/10.1088/2053-1583/3/1/011004 CR - Kruth, J.-P., Leu, M.-C., & Nakagawa, T. (1998). Progress in additive manufacturing and rapid prototyping. Cirp Annals, 47(2), 525-540. https://doi.org/10.1016/S0007-8506(07)63240-5 CR - Deckers, J., Vleugels, J., & Kruth, J.-P. (2014). Additive manufacturing of ceramics: A review. Journal of Ceramic Science and Technology, 5(4), 245-260. https://doi.org/10.4416/JCST2014-00032 CR - Liu, R., Chen, G., Qiu, Y., Chen, P., Shi, Y., Yan, C., & Tan, H. (2021). Fabrication of porous SiC by direct selective laser sintering effect of boron carbide. Metals, 11(5), 737. https://doi.org/10.3390/met11050737 CR - Gibson, I., Rosen, D. W., Stucker, B., Khorasani, M. (2021). Additive manufacturing technologies (3rd ed.). Springer Cham. https://doi.org/10.1007/978-3-030-56127-7 CR - Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2013). Additive manufacturing and its societal impact: A literature review. The International Journal of Advanced Manufacturing Technology, 67, 1191-1203. https://doi.org/10.1007/s00170-012-4558-5 CR - Griffith, M. L., & Halloran, J.W. (1996). Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society, 79(10), 2601-2608. https://doi.org/10.1111/j.1151-2916.1996.tb09022.x CR - Lee, W. E. & Rainforth, M. (1994). Ceramic microstructures: Property control by processing. Springer Dordrecht. ISBN 978-0-412-43140-1 CR - Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347-1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x CR - Ziaee, M., & Crane, N. B. (2019). Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, 781-801. https://doi.org/10.1016/j.addma.2019.05.031 CR - Chen, L., Zhou, S., Li, M., Mo, F., Yu, S., & Wei, J. (2022). Catalytic materials by 3D printing: a mini review. Catalysts, 12(10), 1081. https://doi.org/10.3390/catal12101081 CR - Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society, 89(12), 3599-3609. https://doi.org/10.1111/j.1551-2916.2006.01382.x CR - Wu, J., Zhang, L., Wang, W., Su, R., Gao, X., Li, S., … & He, R. (2023). Microstructures, mechanical properties and electromagnetic wave absorption performance of porous SiC ceramics by direct foaming combined with direct-ink-writing-based 3D printing. Materials, 16(7), 2861. https://doi.org/10.3390/ma16072861 CR - Biçer, H. (2022). Reactive sintering of boron carbide based ceramics by SPS. Journal of Materials and Mechatronics: A, 3(1), 129-136. https://doi.org/10.55546/jmm.1072466 CR - Zakaryan, M. K., Zurnachyan, A. R., Amirkhanyan, N. H., Kirakosyan, H. V., Antonov, M., Rodriguez, M. A., & Aydinyan, S. V. (2022). Novel pathway for the combustion synthesis and consolidation of boron carbide. Materials, 15(14), 5042. https://doi.org/10.3390/ma15145042 CR - Martin, H. P., Feng, B., & Michaelis, A. (2020). Pressureless sintering and properties of boron carbide composite materials. International Journal of Applied Ceramic Technology, 17(2), 407-412. https://doi.org/10.1111/ijac.13423 CR - Kazakova, V., & Grigoryev, E. (2018). Spark plasma sintering of boron carbide powder. KnE Materials Science, 4(1), 548. https://doi.org/ 10.18502/kms.v4i1.2209 CR - Roumiguier, L., Jankowiak, A., Pradeilles, N., Antou, G., & Maître, A. (2019). Mechanical properties of submicronic and nanometric boron carbides obtained by spark plasma sintering: Influence of B/C ratio and oxygen content. Ceramics International, 45(8), 9912- 9918. https://doi.org/10.1016/j.ceramint.2019.02.033 CR - Kozień, D., Czekaj, I., Ziąbka, M., Bik, M., Pasiut, K., Zientara, D., & Pędzich, Z. (2022). Effect of additives on the reactive sintering of ti-b4c composites consolidated by hot pressing and pressureless sintering. Advanced Engineering Materials, 24(9), 2101795. https://doi.org/10.1002/adem.202101795 CR - Xuan, W., Ji, Y., Liu, B., Li, S., Chen, W., Li, Z., … & Long, F. (2023). Spark plasma sintering of boron nitride micron tubes reinforced boron carbide ceramics with excellent mechanical property. International Journal of Applied Ceramic Technology, 20(3), 1457-1469. https://doi.org/10.1111/ijac.14308 CR - Eremeeva, Z. V., Kamali, S., Lizunov, A. I., & Ovchinnikov, V. A. (2022). Production of nanostructured boron carbide ceramics for industrial applications. Key Engineering Materials, 910, 1075-1080. https://doi.org/10.4028/p-dd4bb5 CR - Hales, S., Tokita, E., Neupane, R., Ghosh, U., Elder, B., Wirthlin, D., & Kong, Y. L. (2020). 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 31(17), 172001. https://doi.org/10.1088/1361-6528/ab5f29 CR - Sauerschnig, P., Watts, J., Vaney, J., Talbot, P., Alarco, J., Mackinnon, I., & Mori, T. (2020). Thermoelectric properties of phase pure boron carbide prepared by a solution-based method. Advances in Applied Ceramics, 119(2), 97-106. https://doi.org/10.1080/17436753.2019.1705017 CR - Réjasse, F., Georges, M., Pradeilles, N., Antou, G., & Maître, A. (2018). Influence of chemical composition on mechanical properties of spark plasma sintered boron carbide monoliths. Journal of the American Ceramic Society, 101(9), 3767-3772. https://doi.org/10.1111/jace.15707 CR - Martinez, D. W., Espino, M. T., Cascolan, H. M., Crisostomo, J. L., & Dizon, J. R. C. (2022). A comprehensive review on the application of 3D printing in the aerospace industry. Key Engineering Materials, 913, 27-34. https://doi.org/10.4028/p-94a9zb CR - Gao, S., Dong, K., Li, X., Kong, J., Wang, S., Xing, P., & Li, P. (2019). An economic and environment friendly way of recycling boron carbide waste to prepare B4C/ Al composite ceramic. International Journal of Applied Ceramic Technology, 16(3), 1032-1040. https://doi.org/10.1111/ijac.13129 CR - Khasanov, O. L., Dvilis, E. S., Khasanov, A. O., Bikbaeva, Z. G., Polisadova, V. V., & Milovanova, T. V. (2014). Influence of ultradispersed fraction of boron carbide powder on strength properties of the ceramics manufactured by SPS method. Advanced Materials Research, 872, 45-51. https://doi.org/10.4028/www.scientific.net/AMR.872.45 CR - Roy, T., Subramanian, C., & Suri, A. (2006). Pressureless sintering of boron carbide. Ceramics International, 32(3), 227-233. https://doi.org/10.1016/j.ceramint.2005.02.008 UR - https://doi.org/10.30728/boron.1639273 L1 - https://dergipark.org.tr/tr/download/article-file/4606994 ER -