TY - JOUR T1 - Investigation Of Heat Transfer and Joule-Thomson Effect in Wells of Depleted Oil and Gas Reservoirs Used For Carbon Dioxide (CO2) Storage TT - Karbondioksit (CO2) Depolamak İçin Kullanılan Petrol ve Gaz Rezervuarlarındaki Kuyularda Isı Transferi ve Joule-Thomson Etkisinin Araştırılması AU - Caner, İsmail AU - Kon, Okan PY - 2025 DA - September Y2 - 2025 DO - 10.31202/ecjse.1642591 JF - El-Cezeri JO - El-Cezeri Journal of Science and Engineering PB - Tayfun UYGUNOĞLU WT - DergiPark SN - 2148-3736 SP - 298 EP - 310 VL - 12 IS - 3 LA - en AB - This study investigated the heat transfer mechanisms and the Joule-Thomson effect at the wellhead while storing carbon dioxide (CO₂) in depleted oil, gas, and coal reservoirs. It was assumed that the injected CO₂ for storage is in a single-phase pure state. In the reservoir well, convection heat transfer along the wellbore and conduction heat transfer with the surrounding rock soil were analysed during the production of CO₂ to the surface. Additionally, the cooling effect at the wellhead caused by the Joule-Thomson effect was examined. A positive value of the Joule-Thomson coefficient indicated the presence of a cooling effect. For the production well, the study considered temperatures of 30, 51, and 78 °C, pressures of 3.8, 4.3, and 6.1 MPa, and well depths of 1000, 1700, and 2600 meters. Six different rock-soil types surrounding the production well at the reservoir head were included, with a thermal gradient of 25 °C/km and a CO₂ flow velocity of 1 m/s. The calculated difference in conduction and convection heat loss between the wellhead entry and exit ranged from 23.918 to 481.980 W. The Joule-Thomson coefficient was found to vary between 6.797 and 17.91 0C/MPa, depending on the depth and temperature of the well. The change in exergy efficiency due to the Joule-Thomson effect (throttling exergy) was calculated to vary between 3.042 and 10.766. KW - Carbon dioxide storage KW - reservoir KW - heat transfer KW - Joule-Thomson effect KW - exergy analysis N2 - Bu çalışmada, tükenmiş petrol, gaz ve kömür rezervuarlarında karbondioksit (CO₂) depolanırken kuyu başındaki ısı transfer mekanizmaları ve Joule-Thomson etkisi araştırılmıştır. Depolama amacıyla enjekte edilen CO₂'nin tek fazlı ve saf halde olduğu varsayılmıştır. Rezervuar kuyusunda, kuyu deliği boyunca konvektif ısı transferi ve çevredeki kaya toprağıyla iletken ısı transferi, CO₂'nin yüzeye üretimi sırasında analiz edilmiştir. Ayrıca, Joule-Thomson etkisinin neden olduğu kuyu başındaki soğutma etkisi incelenmiştir. Joule-Thomson katsayısının pozitif bir değere sahip olması, bir soğutma etkisinin varlığını göstermiştir. Bu çalışmada, üretim kuyusu için 30, 51 ve 78 °C sıcaklıkları; 3,8, 4,3 ve 6,1 MPa basınçları ile 1000, 1700 ve 2600 metrelik kuyu derinlikleri dikkate alınmıştır. Rezervuar başındaki üretim kuyusunu çevreleyen altı farklı kaya-toprak tipi değerlendirilmiş olup, termal gradyan 25 °C/km ve CO₂ akış hızı 1 m/s olarak belirlenmiştir. Kuyu başı girişi ve çıkışı arasındaki iletim ve taşınım ısı kaybındaki hesaplanan farkın 23.918 ila 481.980 W arasında değiştiği tespit edilmiştir. Joule-Thomson katsayısının, kuyunun derinliğine ve sıcaklığına bağlı olarak 6,797 ila 17,91 °C/MPa arasında değiştiği belirlenmiştir. Ayrıca, Joule-Thomson etkisinden (kısma ekserjisi) kaynaklanan ekserji verimliliğindeki değişimin 3,042 ila 10,766 arasında olduğu hesaplanmıştır. CR - [1] Metz, B., Davidson, O., De Coninck, H. C., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press. CR - [2] Rifat US, Cağlar S, Elif K, Turkiye’nin Karbon Yakalama, Kullanma ve Depolama Potansiyeli, Kaynak, Cevre ve İklim Derneği – REC, Mart 2024, Ankara CR - [3] Olajire, A. A. (2020). Flow assurance issues in deep-water gas well testing and mitigation strategies with respect to gas hydrates deposition in flowlines—A review. Journal of molecular liquids, 318, 114203. https://doi.org/10.1016/j.molliq.2020.114203 CR - [4] Li, Z., Dong, M., Li, S., & Huang, S. (2006). CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity. Energy conversion and management, 47(11-12), 1372-1382. https://doi.org/10.1016/j.enconman.2005.08.023 CR - [5] Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy, 208, 1389-1419. https://doi.org/10.1016/j.apenergy.2017.09.015 CR - [6] Liu, X., Falcone, G., & Alimonti, C. (2018). A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs. Energy, 142, 346-355. https://doi.org/10.1016/j.energy.2017.10.058 CR - [7] Luo, Y., Xu, G., & Yan, T. (2020). Performance evaluation and optimization design of deep ground source heat pump with non-uniform internal insulation based on analytical solutions. Energy and Buildings, 229, 110495. https://doi.org/10.1016/j.enbuild.2020.110495 CR - [8] Wang, Z., Fan, W., Sun, H., Yao, J., Zhu, G., Zhang, L., & Yang, Y. (2020). Multiscale flow simulation of shale oil considering hydro-thermal process. Applied Thermal Engineering, 177, 115428. https://doi.org/10.1016/j.applthermaleng.2020.115428 CR - [9] Guo, Y., Zhao, J., & Liu, W. V. (2024). Effects of varying heat transfer rates for borehole heat exchangers in layered subsurface with groundwater flow. Applied Thermal Engineering, 247, 123007. https://doi.org/10.1016/j.applthermaleng.2024.123007 CR - [10] Bai, M., Zhang, Z., & Fu, X. (2016). A review on well integrity issues for CO2 geological storage and enhanced gas recovery. Renewable and Sustainable Energy Reviews, 59, 920-926. https://doi.org/10.1016/j.rser.2016.01.043 CR - [11] Amar, M. N., Ghahfarokhi, A. J., & Zeraibi, N. (2020). Predicting thermal conductivity of carbon dioxide using group of data-driven models. Journal of the Taiwan Institute of Chemical Engineers, 113, 165-177. https://doi.org/10.1016/j.jtice.2020.08.001 CR - [12] Liu, Z., Yang, W., Xu, K., Zhang, Q., Yan, L., Li, B., ... & Yang, M. (2023). Research progress of technologies and numerical simulations in exploiting geothermal energy from abandoned wells: a review. Geoenergy Science and Engineering, 224, 211624. https://doi.org/10.1016/j.geoen.2023.211624 CR - [13] Jia, M., Deng, S., Li, X., Jin, W., Yang, Z., & Rao, D. (2023). A numerical simulation study of the micro-mechanism of CO2 flow friction in fracturing pipe string. Gas Science and Engineering, 112, 204941. https://doi.org/10.1016/j.jgsce.2023.204941 CR - [14] Zhou, Y., Liu, Z., & Xing, C. (2022). Application of abandoned wells integrated with renewables. In Utilization of Thermal Potential of Abandoned Wells (pp. 255-273). Academic Press. https://doi.org/10.1016/B978-0-323-90616- 6.00013-0 CR - [15] Kengerli, T. S., & Agayeva, N. A. (2024). Influence of connecting a new gas pipeline to the operating gas pipeline on the flow rate of production wells. https://doi.org/10.53404/Sci.Petro.20240100053 CR - [16] Apak, E. C. (2006). A study on heat transfer inside the wellbore during drilling operations. Master's thesis, Middle East Technical University. CR - [17] Sorgun, M. (2010). Modeling of Newtonian fluids and cuttings transport analysis in high inclination wellbores with pipe rotation. CR - [18] Ettehadi, A. (2016). Modelling Wellbore Hydraulics through Thermal Rheological Sepiolite Mud Properties. PhD thesis, Graduate School of Science, Engineering and Technology, Istanbul Technical University. CR - [19] Ahmed, N., Kabir, E., & Islam, M. A. (2024, April). The influence of borehole lengths on a numerical model of a double-tube vertical ground heat exchanger. In IOP Conference Series: Materials Science and Engineering (Vol. 1305, No. 1, p. 012002). IOP Publishing. https://doi.org/10.1088/1757-899X/1305/1/012002 CR - [20] Holloway, S. (2007). Carbon dioxide capture and geological storage. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1853), 1095-1107. https://doi.org/10.1098/rsta.2006.1953 CR - [21] Bachu, S. (2003). Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environmental Geology, 44(3), 277-289. https://doi.org/10.1007/s00254-003-0762-9 CR - [22] Bahadori, A., & Vuthaluru, H. B. (2010). Predictive tool for an accurate estimation of carbon dioxide transport properties. International Journal of Greenhouse Gas Control, 4(3), 532-536. https://doi.org/10.1016/j.ijggc.2009.12.007 CR - [23] Vesovic, V., Wakeham, W. A., Olchowy, G. A., Sengers, J. V., Watson, J. T. R., & Millat, J. (1990). The transport properties of carbon dioxide. Journal of physical and chemical reference data, 19(3), 763-808. https://doi.org/10.1063/1.555875 CR - [24] Lim, O.S. Optimization of Gas Transmission Design. 2011. Available online: http://utpedia.utp.edu.my/id/eprint/10565/1/20 11%20-%20Optimizing%20of%20gas%20transmission%20design.pdf (accessed on 22 Jan 2025). CR - [25] Sagir, M., Mushtaq, M., Tahir, M. S., Tahir, M. B., Ullah, S., Abbas, N., & Pervaiz, M. (2018). CO2 capture, storage, and enhanced oil recovery applications. Encyclopedia of Renewable and Sustainable Materials. Elsevier, 52-58. https://doi.org/10.1016/B978-0-12-803581-8.10360-1 CR - [26] Wu, Z., Xu, J., Wang, X., Chen, K., Li, X., & Zhao, X. (2011). Predicting temperature and pressure in high-temperature– high-pressure gas wells. Petroleum Science and Technology, 29(2), 132-148. https://doi.org/10.1080/10916460903330213 CR - [27] Kurnia, J. C., Shatri, M. S., Putra, Z. A., Zaini, J., Caesarendra, W., & Sasmito, A. P. (2022). Geothermal energy extraction using abandoned oil and gas wells: Techno‐economic and policy review. International Journal of Energy Research, 46(1), 28-60. https://doi.org/10.1002/er.6386 CR - [28] Shoghl, S. N., Naderifar, A., Farhadi, F., & Pazuki, G. (2020). Prediction of Joule-Thomson coefficient and inversion curve for natural gas and its components using CFD modeling. Journal of Natural Gas Science and Engineering, 83, 103570. https://doi.org/10.1016/j.jngse.2020.103570 CR - [29] Chevarunotai, N. (2014). Analytical Models for Flowing-Fluid Temperature Distribution in Single-Phase Oil Reservoirs Accounting for Joule-Thomson Effect. PhD thesis. CR - [30] Islam, R. (2017). Analytical Model for Fluid Temperature Change During Expansion in the Reservoir. PhD thesis. CR - [31] Ding, L., Yang, Z., Chen, W., & Zhang, Q. (2023). Transient prediction method for flow temperature at wellbore bottom. Applied Thermal Engineering, 234, 121208. https://doi.org/10.1016/j.applthermaleng.2023.121208 CR - [32] Randolph, J. B., Adams, B., Kuehn, T. H., & Saar, M. O. (2012). Wellbore heat transfer in CO2-based geothermal systems. Geothermal Resources Council Transactions, 36, 549-554. CR - [33] Van Der Meer, B. (2005). Carbon dioxide storage in natural gas reservoir. Oil & gas science and technology, 60(3), 527-536. https://doi.org/10.2516/ogst:2005035 CR - [34] Kon, O. (2004). Termodinamik kısılma ve madde ozelliklerine etkisi. Master's thesis, Balıkesir Universitesi Fen Bilimleri Enstitusu. CR - [35] Kon, O. (2009). Termodinamik kısılma olayında Joule-Thomson katsayısı ve inversiyon eğrileri. Balıkesir Universitesi Fen Bilimleri Enstitusu Dergisi, 11(2), 81-93. CR - [36] Randolph, J. B., & Saar, M. O. (2011). Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophysical Research Letters, 38(10). https://doi.org/10.1029/2011GL047265 CR - [37] Phillip L. Swagel, Carbon Capture and Storage in the United State, December 2023. CR - [38] Energy, Technology, & Policy, Carbon Dioxide Enhanced Oil Recovery: A Great Environmental Choice, https://webberenergyblog.wordpress.com/2012/04/01/carbon-dioxide-enhanced-oil-recovery-a-great-environmentalchoice/ (access: 12.27.2024) CR - [39] Huang, Y., Zheng, Q. P., Fan, N., & Aminian, K. (2014). Optimal scheduling for enhanced coal bed methane production through CO2 injection. Applied energy, 113, 1475-1483. http://dx.doi.org/10.1016/j.apenergy.2013.08.074 CR - [40] Samuel, R. J. (2019). Transient flow modelling of carbon dioxide (CO2) injection into depleted gas fields. PhD thesis. University College London. CR - [41] Gaurina-Međimurec, N., & Pašić, B. (2011). Design and mechanical integrity of CO2 injection wells. Rudarsko- Geolosko-Naftni Zbornik, 23. CR - [42] CO2 injection well in Mississippi, https://www.usgs.gov/media/images/co2-injection-well-mississippi, April 9, 2010 (access: 12.26.2024) CR - [43] Witkowski, A., Majkut, M., & Rulik, S. (2014). Analysis of pipeline transportation systems for carbon dioxide sequestration. Archives of thermodynamics, 35(1), 117-140. http://dx.doi.org/10.2478/aoter-2014-0008 CR - [44] Lu, T., Li, Z., Fan, W., & Li, S. (2016). CO2 huff and puff for heavy oil recovery after primary production. Greenhouse Gases: Science and Technology, 6(2), 288-301. https://doi.org/10.1002/ghg.1566 CR - [45] Longe, P. O., Danso, D. K., Gyamfi, G., Tsau, J. S., Alhajeri, M. M., Rasoulzadeh, M., ... & Barati, R. G. (2024). Predicting CO2 and H2 Solubility in Pure Water and Various Aqueous Systems: Implication for CO2–EOR, Carbon Capture and Sequestration, Natural Hydrogen Production and Underground Hydrogen Storage. Energies, 17(22), 5723. https:// doi.org/10.3390/en17225723 CR - [46] Chow, Y. F., Maitland, G. C., & Trusler, J. M. (2016). Interfacial tensions of the (CO2+ N2+ H2O) system at temperatures of (298 to 448) K and pressures up to 40 MPa. The Journal of Chemical Thermodynamics, 93, 392- 403.http://dx.doi.org/10.1016/j.jct.2015.08.006 CR - [47] Wang, R., Shi, M., Zhu, K., Yu, J., Ren, W., Yan, G., ... & Gao, S. (2024). Research on the heat transfer model of double U-pipe ground heat exchanger based on in-situ testing. Frontiers in Energy Research, 12, 1442185. https://doi.org/10.3389/fenrg.2024.1442185 CR - [48] Fuchs, S., Balling, N., & Forster, A. (2015). Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophysical Journal International, 203(3), 1977-2000. https://doi.org/10.1093/gji/ggv403 CR - [49] Mobaraki, H. (2024). The Cooling Effect of Joule Thomson on CO2 Storage during Start-Up Period: Integration of Reservoir and Wellbore. PhD thesis, Politecnico di Torino. CR - [50] Shoghl, S. N., Naderifar, A., Farhadi, F., & Pazuki, G. (2021). Thermodynamic analysis and process optimization of a natural gas liquid recovery unit based on the Joule–Thomson process. Journal of Natural Gas Science and Engineering, 96, 104265. https://doi.org/10.1016/j.jngse.2021.104265 CR - [51] Cengel, Y. A., & Ghajar A.F. (2015). Isı ve Kutle Transferi, Palme Yayınevi. CR - [52] Kayansayan N., Thermodynamics Principle & Applications, Nobel Akademik Yayıncılık, 2013. CR - [53] Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triplepoint temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data, 25(6), 1509- 1596. https://doi.org/10.1063/1.555991 CR - [54] Menon, E.S. (2005). Gas Pipeline Hydraulics (1st ed.). CRC Press. https://doi.org/10.1201/9781420038224 CR - [55] Luo, Y., & Wang, X. (2010). Exergy analysis on throttle reduction efficiency based on real gas equations. Energy, 35(1), 181-187. https://doi.org/10.1016/j.energy.2009.09.008 CR - [56] Kotas, T. J. (2012). The Exergy Method of Thermal Plant Analysis, 1985. Great Britain by Anchor Brendon Ltd, Tiptree, Essex. CR - [57] Li, J., Chen, Y., Ma, Y. B., Kwon, J., & Xu, H. (2023). Ji-Chao Li A study on the Joule-Thomson effect of during filling hydrogen in high pressure tank, Case Studies in Thermal Engineering, 41, 102678. https://doi.org/10.1016/j.csite.2022.102678 CR - [58] Erdoğan, M., & Acar, M. Ş. (2024). Thermodynamic analysis of a tunnel biscuit oven and heat recovery system. WAPRIME, 1(1), 1-15. CR - [59] Unal, E. K. (2024). Analytical and numerical investigation of viscous heating in parallel-plate Couette flow. WAPRIME, 1(1), 57-69. UR - https://doi.org/10.31202/ecjse.1642591 L1 - https://dergipark.org.tr/tr/download/article-file/4621855 ER -