TY - JOUR T1 - A practical study of multi-layer high gain U-slot printed antenna array design TT - Çok katmanlı yüksek kazançlı U-yarık anten dizisi tasarımının pratik bir çalışması AU - Bulut Öner, Gülden Günay AU - Çayan, Asena Melike AU - Başbuğ, Suad AU - Altuncu, Yasemin PY - 2025 DA - July Y2 - 2025 DO - 10.28948/ngumuh.1643101 JF - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JO - NÖHÜ Müh. Bilim. Derg. PB - Niğde Ömer Halisdemir Üniversitesi WT - DergiPark SN - 2564-6605 SP - 846 EP - 854 VL - 14 IS - 3 LA - en AB - In this paper, we propose the design of a multi-layer high-gain U-slot printed antenna array consisting of 2x2 elements.The design consists of four layers: The first layer is a ground plane as a single-sided copper clad FR4. The second layer, made from PETG material, is introduced to enhance the bandwidth of the antenna. Microstrip antenna elements and feed lines are etched into the top segment of the third layer. The fourth layer is a directive structure used to increase the gain of the antenna array, which consists of 8x8 64-elements microstrip patches separated by air gap from the main body. This parasitic layer is supported by four rods fixed to the third layer. According to the results, the simulated center frequency of the proposed design is 2.61 GHz. The maximum gain simulated at 2.61 GHz is 12 dBi, and the measured impedance bandwidth is 14.27%. Additionally, in this study, the fabrication and measurements of the presented antenna were carried out to validate the simulation results. Comparisons between the simulation and measurement data show good agreement in the S11 parameter and radiation pattern graphs. KW - Antenna array KW - high gain KW - multi-layer KW - U-slot antenna N2 - Bu makalede, 2x2 elemanlardan oluşan çok katmanlı yüksek kazançlı U-yarık anten dizisinin tasarımı sunulmaktadır. Tasarım dört katmandan oluşmaktadır: Birinci katman, tek yüzü bakır kaplanmış FR4 malzemesinden oluşan bir toprak düzlemidir. İkinci katman, antenin bant genişliğini artırmak için PETG malzemesinden yapılmıştır. Üçüncü katmanın üst segmentine mikroşerit anten elemanları ve besleme hatları kazınmıştır. Dördüncü katman, anten dizisinin kazancını artırmak için kullanılan yönlendirilmiş bir yapıdır ve bu yapı, ana gövdeden hava boşluğu ile ayrılmış 8x8'lik 64 elemanlı mikroşerit yama elemanlarından oluşmaktadır. Bu parazitik katman, üçüncü katmana sabitlenmiş dört çubukla desteklenmektedir. Sonuçlara göre, önerilen tasarımın simüle edilmiş merkezi frekansı 2.61 GHz'dir. 2.61 GHz'de simüle edilen maksimum kazanç 12 dBi ve ölçülen empedans bant genişliği %14.27 olarak elde edilmiştir. Ayrıca bu çalışmada, simülasyon sonuçlarının doğrulanması amacıyla sunulan antenin üretimi ve ölçümleri gerçekleştirilmiştir. Simülasyon ve ölçüm verileri arasındaki karşılaştırmalar S11 parametresi ve ışıma örüntüsü grafiklerinde iyi bir uyum olduğunu göstermektedir. CR - D.M. Pozar, Microwave engineering. John Wiley & Sons, 2011. CR -     W. L. Stutzman and G. A. Thiele, Antenna theory and design. John Wiley & Sons, 2012. CR -     D. H. Schaubert, D. M. Pozar and A. Adrian. Effect of microstrip antenna substrate thickness and permittivity: comparison of theories with experiment, IEEE Transactions on Antennas and Propagation, 37, 6, 677-682, 1989. https://doi.org/10.1109/8.29353 CR -     V.R. Gupta, N. Gupta, Two Compact Microstrip Patch Antennas for 2.4 GHz Band – A Comparison. Microwave Review, 12 (2), 29-31, 2006. CR -     H. R. Bae, S. O. So, C. S. Cho, J. W. Lee and J. Kim, A Crooked U-slot Dual-Band Antenna with Radial Stub Feeding. IEEE Antennas and Wireless Propagation Letters, 8, 1345-1348, 2009. https://doi .org/10.1109/LAWP.2009.2038937 CR -     K. Wong, H. Chang, C. Wang and S. Wang, Very-Low-Profile Grounded Coplanar Waveguide-Fed Dual-Band WLAN Slot Antenna for On-Body Antenna Application. IEEE Antennas and Wireless Propagation Letters, 19 (1), 213-217, 2020, https://doi.org/ 10.1109/LAWP.2019.2958961 CR -     J. J. Borchardt and T. C. Lapointe, U-slot Patch Antenna Principle and Design Methodology Using Characteristic Mode Analysis and Coupled Mode Theory. IEEE Access, 7, 109375-109385, 2019. https:// doi.org/10.1109/ACCESS.2019.2933175 CR -     C. Shekhar, An Optimized High Gain Microstrip Patch Array Antenna for Sensor Networks. International Conference on Communication, Networks and Computing, Springer, Singapore, 2018. CR -     C. Kumar, M. I. Pasha and D. Guha, Defected Ground Structure Integrated Microstrip Array Antenna for Improved Radiation Properties.  IEEE Antennas and Wireless Propagation Letters, 16, 310-312, 2017. https://doi.org/10.1109/LAWP.2016.2574638 CR -   B. Qian, X. Chen and A. A. Kishk, Decoupling of Microstrip Antennas with Defected Ground Structure Using the Common/Differential Mode Theory. IEEE Antennas and Wireless Propagation Letters, 20, 5, 828-832,2021. https://doi.org/10.1109/LAW P.2021.306 49 72 CR - F.Y. Zulkifli, E.T. Rahardjo and D. Hartanto, Radiation properties enhancement of triangular patch microstrip antenna array using hexagonal defected ground structure. Progress In Electromagnetics Research M, 5, 101-109,2008.https://doi.org/10.2528/PIERM0 81016 01 CR - M. Salehi, A. Tavakoli, A novel low mutual coupling microstrip antenna array design using defected ground structure, AEU-International Journal of Electronics and communications, 60 (10), 718-723, 2006. https://doi. org/10.1016/j.aeue.2005.12.009 CR -   H. Alias, M. T. Ali, S. Subahir, N. Ya'acob and M. A. Sulaiman, Aperture coupled microstrip antenna array integrated with DGS and parasitic elements. 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA),259-263,2013. https://doi.org/10.1109/ISW TA.2013.6688783 CR -   R. -L. Xia, S. -W. Qu, S. Yang and Y. Chen, Wideband Wide-Scanning Phased Array with Connected Backed Cavities and Parasitic Striplines.  IEEE Transactions on Antennas and Propagation, 66, 4, 1767-1775, 2018. https://doi.org/10.1109/TAP.2018.2803131 CR -   C. Arora, S.S. Pattnaik and R.N. Baral, SRR Superstrate for Gain and Bandwidth Enhancement of Microstrip Patch Antenna Array. Progress In Electromagnetics Research B, 76, 73-85, 2017. https://doi.org/10.2528/PIERB17041405 CR -   M. Asaadi and A. Sebak, Gain and Bandwidth Enhancement of 2 × 2 Square Dense Dielectric Patch Antenna Array Using a Holey Superstrate. IEEE Antennas and Wireless Propagation Letters, 16, 1808-1811,2017. https://doi.org/10.1109/LAWP.2017.2679 698 CR -   A.R. Vaidya, R.K. Gupta, S.K Mishra and J. Mukherjee, High-gain low side lobe level Fabry Perot cavity antenna with feed patch array. Progress In Electromagnetics Research C, 28, 223-238, 2012. https://doi.org/10.2528/PIERC12031503 CR -   S. Dalvi, S. Jagtap, V. Yadav and R. K. Gupta, High gain wideband 2×2 microstrip array antenna using RIS and Fabry Perot Cavity resonator. 2016 International Conference on Microelectronics, Computing and Communications (MicroCom),1-6, 2016. https://doi. org/10.1109/MicroCom.2016.7522547 CR -   S. Shingate, N. Shukla and N. R. Ingale, Bandwidth and Gain Enhancement of Microstrip Array Antenna using Stacked Layer of Parasitic Patches. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 32-36, 2018. https:/doi.org/ 10.1109/RTEICT42901.2018.9012634 CR -   A. M. Mehta, S. B. Deosarkar, and A. B. Nandgaonkar, Design and Development of CPW-fed Miniaturized MSA for Improved Gain, Bandwidth and Efficiency Using PRS. Progress in Electromagnetics Research C, 137,211–222,2023. https://doi.org/10.2528/PIERC23 0 71403 CR -   M.A. Ramkumar, C. Sudhendra and K. Rao, A novel low RCS microstrip antenna array using thin and wideband radar absorbing structure based on embedded passives resistors. Progress In Electromagnetics Research C, 68, 153-161, 2016. https:doi.org/10.2528/ PIERC16080506 CR -   B. Rana and S. K. Parui, Nonresonant Microstrip Patch-Fed Dielectric Resonator Antenna Array. IEEE Antennas and Wireless Propagation Letters, 14, 747-750, 2015. https://doi.org/10.1109/LAWP.2014.2379 624 CR -   J. -H. Ou, J. Huang, J. Liu, J. Tang and X. Y. Zhang, High-Gain Circular Patch Antenna and Array with Introduction of Multiple Shorting Pins. IEEE Transactions on Antennas and Propagation, 68, 9, 6506-6515, 2020. https://doi.org/10.1109/TAP.2020.2983793 CR -   D. Helena, A. Ramos, T. Varum, and J. N Matos, Antenna design using modern additive manufacturing technology: A review. IEEE Access, 8, 177064-177083, 2020. https://doi.org/10.1109/ACCESS.2020. 3027383 CR -   S.S. Carvalho, J. R. Reis, A. Mateus and R. F. Caldeirinha, Exploring design approaches for 3D printed antennas. IEEE Access, 12, 10718-10735, 2024. https://doi.org/10.1109/ACCESS.2024.3354372 CR -   J. Sun and F. Hu, Three‐dimensional printing technologies for terahertz applications: a review. International Journal of RF and Microwave Computer‐Aided Engineering, 30 (1), e21983, 2020. https://doi.org/10.1002/mmce.21983 CR -   D. D. Patil, K. S. Subramanian and, N. C. Pradhan, 3-D-printed dual-band rectenna system for green IoT application. IEEE Transactions on Circuits and Systems II: Express Briefs, 70 (8), 2864-2868, 2023. https://doi.org/10.1109/TCSII.2023.3248171 CR -   F. Pizarro, R. Salazar, E. Rajo-Iglesias, M. Rodriguez, S. Fingerhuth, and G.Hermosilla, Parametric study of 3D additive printing parameters using conductive filaments on microwave topologies. IEEE Access, 7, 106814-106823, 2019. https://doi.org/10.1109/ACCE SS.2019.2932912 CR -   M. A Belen, Stacked microstrip patch antenna design for ISM band applications with 3D‐printing technology. Microwave and Optical Technology Letters, 61(3), 709-712, 2019. https://doi.org/10.1002 /mop.31603 CR -   G. Muntoni et al., A curved 3D-printed S-band patch antenna for plastic CubeSat. IEEE Open Journal of Antennas and Propagation, 3, 1351-1363, 2022. https://doi.org/10.1109/OJAP.2022.3222454 CR - M. F Farooqui, and A. Kishk, 3-D-printed tunable circularly polarized microstrip patch antenna. IEEE Antennas and Wireless Propagation Letters, 18 (7), 1429-1432, 2019. https://doi.org/10.1109/LAWP.2019 .2919255 CR -   G. G. B. Oner, S. Basbug and Y. Altuncu, Multi-Layer I-Slot Microstrip Antenna for Internet of Things Applications. 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkiye, 2023, 1-4.https://doi.org/10.1109/EL ECO60389.2023.10415969 CR -   S. Jagtap, A. Chaudhari, N. Chaskar, S. Kharche and R. K. Gupta, A Wideband Microstrip Array Design Using RIS and PRS Layers. IEEE Antennas and Wireless Propagation Letters, 17 (3), 509-512, 2018. https:// doi.org/10.1109/LAWP.2018.2799873 CR -   F. Karami, P. Rezaei, A. Amn‐e‐Elahi, A. Abolfathi, and A. A. Kishk, Broadband and efficient patch array antenna fed by substrate integrated waveguide feed network for Ku‐band satellite applications. International Journal of RF and Microwave Computer-Aided Engineering, 31 (9), 2021. https://doi.org/ 10.1002/mmce.22772 CR -   P. Le Bihan et al., Dual-Polarized Aperture-Coupled Patch Antennas with Application to Retrodirective and Monopulse Arrays. IEEE Access, 8, 7549-7557, 2020. https://doi.org/10.1109/ACCESS.2019.2961601 CR -   L. Gu, W. Yang, W. Feng, Q. Xue, Q. Meng and W. Che, Low-Profile Ultrawideband Circularly Polarized Metasurface Antenna Array, IEEE Antennas and Wireless Propagation Letters, 19 (10), 1714-1718, 2020. https://doi.org/10.1109/LAWP.2020.3014436 CR -   X. Liu and Z. Yan, Broadband RCS reduction for both microstrip array and Fabry‐Perot antenna based on the quasi‐ AMC superstrate. International Journal of RF and Microwave Computer-Aided Engineering, 31 (11), 2021. https://doi.org/10.1002/mmce.22838 CR -   C. A. Balanis, Antenna Theory: Analysis and Design. John Wiley and Sons, 2016. UR - https://doi.org/10.28948/ngumuh.1643101 L1 - https://dergipark.org.tr/tr/download/article-file/4624114 ER -