TY - JOUR T1 - Pixy Erik Klon Anacının Mikro Çoğaltımında Destek Sistemli Sıvı Besin Ortamının Sürgün Çoğaltma Aşamasında Performansı TT - Performance of Liquid Nutrient Medium with Support System in Micropropagation of Pixy Plum Clone Rootstock in Shoot Proliferation Stage AU - Dumanoğlu, Hatice AU - Ölmez, Alper AU - Polat, Gülüstan PY - 2025 DA - June Y2 - 2025 DO - 10.29278/azd.1645026 JF - Akademik Ziraat Dergisi PB - Ordu Üniversitesi WT - DergiPark SN - 2147-6403 SP - 13 EP - 22 VL - 14 IS - 1 LA - tr AB - Amaç: Bu çalışmanın amacı, Pixy erik klon anacının (P. insititia L.) mikro çoğaltımında sürgün çoğaltma aşamasında destek sistemli sıvı besin ortamının, farklı BAP (6-benzil amino pürin) dozları ile birlikte sürgün canlılığı, çoğaltımı ve kalitesi üzerine etkilerinin araştırılmasıdır.Materyal ve Yöntem: Bitkisel materyal olarak alt kültürlerden sağlanan mikro sürgünler kullanılmıştır. Modifiye edilmiş Murashige ve Skoog (MS) besin ortamına 0.01 mg L-1 IBA (indol-3-bütirik asit) ve 0.1 mg L-1 GA3 (gibberellik asit) ile birlikte BAP’ın 0.5 mg L-1 veya 1.0 mg L-1 dozları, 30 g L-1 sakaroz ilave edilmiştir. Yarı katı besin ortamı 0.65 g L-1 agar ile katılaştırılmıştır. Sıvı besin ortamında destek sistemi olarak filtre kâğıdı kullanılmıştır. Kültürler 251 oC sıcaklık ve 16 saat aydınlık (35 µmol m-2 s-1) koşullarda tutulmuştur. Dördüncü haftanın sonunda sürgünlerde canlılık oranı, canlı kalan kültürlerde sürgün çoğalma oranı, sürgün sayısı, uzunluğu, kalınlık düzeyi (1-3) ve yaprak sayısı belirlenmiştir.Araştırma Bulguları: Sürgünlerde canlılık oranı BAP dozlarının ortalaması olarak sıvı ortamda (%100.0), yarı katı ortama (%66.7) göre ve canlı kalan kültürlerde çoğalma oranı yarı katı ortamda (%91.7), sıvı ortama (%73.6) göre istatistiksel anlamda önemli düzeyde daha yüksek bulunmuştur. Tüm uygulamaların ortalaması olarak sürgün sayısı 2.8±0.3 ve yaprak sayısı ise 8.0±0.6 adet/eksplant, sürgün kalınlık düzeyi 2.0±0.1 olarak belirlenmiştir. Ortalama sürgün uzunluğu, yarı katı ortamda (10.1±3.1 mm), sıvı ortamdan (8.0±2.5 mm) daha yüksek bulunmuştur.Sonuç: Sıvı ortamda eksplantların canlılık oranı yarı katı ortama göre %33.3 daha yüksek bulunmuştur. Bu durum dikkate alınarak canlılık yüzdesine göre hesaplanan sürgün çoğalma oranı sıvı ortamda (%73.6), yarı katı ortamdan (%61.2) %12.4 daha yüksek gerçekleşmiştir. Her iki ortam tipinde de sürgünler genellikle benzer sayıda ve kalitede üretilmiştir. Ortam tiplerinin ortalaması olarak BAP’ın 0.5 mg L-1 dozu (%88.5), 1.0 mg L-1 dozuna (%72.9) göre sürgün çoğaltım oranını artırmıştır. KW - Prunus insititia KW - in vitro KW - 6-benzil amino pürin KW - yarı katı ortam N2 - Objective: The aim of this study was to investigate the effects of liquid nutrient medium with support system, together with different BAP (6-benzylaminopurine) doses, on shoot survival, multiplication and quality during the shoot proliferation stage in micropropagation of Pixy plum clone rootstock (P. insititia L.).Material and Methods: Micro shoots obtained from subcultures were used as plant material. Modified Murashige and Skoog (MS) nutrient medium containing 0.01 mg L-1 IBA (indole-3-butyric acid) and 0.1 mg L-1 GA3 (gibberellic acid), 0.5 mg L-1 or 1.0 mg L-1 doses of BAP and 30 g L-1 sucrose were added. Semi-solid nutrient medium was solidified with 0.65 g L-1 agar. Filter paper was used as a support system in liquid nutrient medium. Cultures were kept at 25±1 °C and 16 h light (35 µmol m-2 s-1) conditions. At the end of the fourth week, shoot survival percentage and shoot proliferation percentage, shoot number, length, thickness level (1-3) and leaf number in surviving cultures were determined.Results: As an average of BAP doses, shoot survival percentage was found to be significantly higher in liquid medium (%100.0) than in semi-solid medium (%66.7), whereas the proliferation percentage in surviving cultures was statistically significantly higher in semi-solid medium (%91.7) than in liquid medium (%73.6). As an average of all treatments, shoot number and leaf number were determined as 2.8±0.3 and 8.0±0.6 per explant, respectively, and shoot thickness level was 2.0±0.1. The average shoot length was found to be higher in semi-solid medium (10.1±3.1 mm) than in liquid medium (8.0±2.5 mm).Conclusion: The survival percentage of explants in liquid medium was found to be 33.3% higher than in semi-solid medium. In this case, the shoot proliferation percentage calculated according to the survival percentage was 12.4% higher in liquid medium (73.6%) than in semi-solid medium (61.2%). Shoots were generally produced in similar numbers and quality in both media types. As an average of media types, 0.5 mg/L dose of BAP (88.5%) increased the shoot proliferation percentage compared to 1.0 mg/L (72.9%). CR - Arıcı, S. E. (2008). Bazı sert çekirdekli meyve anaçlarının doku kültürü ile çoğaltılması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 3(1), 19-23. CR - Beakbane, A. B. (1977). Plum rootstock-Pixy variety. U.S. Patent No. Plant 4,061. CR - Cantabella, D., Mendoza, C.R., Teixidó, N., Vilaró, F., Torres, R., & Dolcet-Sanjuan, R. (2022). GreenTray® TIS bioreactor as an effective in vitro culture system for the micropropagation of Prunus spp. rootstocks and analysis of the plant-PGPMs interactions, Scientia Horticulturae, 291, 110622. https://doi.org/10.1016/j.scienta.2021.110622 CR - Dodds, J. H. & Roberts, L. W. (1993). Experiments in plant tissue culture. Cambridge University Press. New York, 231 p. CR - Dolcet-Sanjuan, R., Casanovas, M., Franquesa, S., Alsina, E., Carrasco-Cuello, F., Torres, E., Rufat, J., Solsona, C., & Teixido, N. (2024). GreenTray®, a TIS bioreactor for plant micropropagation and abiotic or biotic stress bioassays. Applied Sciences, 14(10), 4051. https://doi.org/10.3390/app14104051 CR - Dolgun, O., Tekintas, F. E., & Ertan, E. (2008). A histological investigation on graft formation of some nectarine cultivars grafted on Pixy rootstock. World Journal of Agricultural Sciences 4(5), 565-568. CR - Donadio, L. C., Lederman, I. E., Roberto, S. R., & Stucchi, E. S. (2019). Dwarfing-canopy and rootstock cultivars for fruit trees. Revista Brasileira De Fruticultura, 41(3), 1-12. https://doi.org/10.1590/0100-29452019997 CR - Gago, D., Sánchez, C., Aldrey, A., Christie, C. B., Bernal, M. Á., & Vidal, N. (2022). Micropropagation of plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic conditions. Horticulturae, 8(4), 286. https://doi.org/10.3390/horticulturae8040286 CR - Geyik, D., & Canlı, F. A. (2015). Micropropagation of ‘Pixy’ (Prunus institia L.) rootstock. Plant Molecular Biology & Biotechnology. 5, 1-6. CR - Dutta Gupta, S., & Prasad, V. S. S. (2006). Matrix-supported liquid culture systems for efficient micropropagation of floricultural plants. J. A. Teixeira da Silva (Ed.), Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues içinde (487-495. ss.). London: Global Science Books, Ltd. CR - Hartmann, H. T., Kester, D. E., Davies, Jr. F. T., & Geneve, R. L. (2011). Plant Propagation: Principles and Practices (8th Edition). Prentice-Hall, Boston, 915 p. CR - Jones, O. P., & Hopgood, M. E. (1979). The successful propagation in vitro of two rootstocks of Prunus: the plum rootstock Pixy (P. insititia) and the cherry rootstock F12/1 (P. avium). Journal of Horticultural Science, 54(1), 63-66. https://doi.org/10.1080/00221589.1979.11514849 CR - Kaushalya, D. B. R., Eeswara, J. P., & Jayasinghe, L. (2023). Development of liquid culture system for rapid multiplication of Gyrinops walla. Tropical Agricultural Research, 34(1), 43-51. http://doi.org/10.4038/tar.v34i1.8603 CR - Lal, M, Jamwal, M, Sood Y, Bakshi, P, Sharma, N, Sharma, S, & Kumar, S. (2023). Micropropagation of fruit crops: A review. Plant Science Today, 10(1), 108-117. https://doi.org/10.14719/ pst.1891 CR - Lang, G. A. (2024). Guidelines for the choice of stone fruit rootstocks. Italus Hortus, 31, 18-26. https://doi.org/10.26353/j.itahort/2024.1.1826 CR - Mehta, M., Ram, R., & Bhattacharya, A. (2014). A simple and cost effective liguid culture system fort he micropropagation of two comeercially important apple rootstocks. Indian Journal of Exprimental Biology, 52, 748-754. https://doi.org/10.4314/AJB.V6I13.57591 CR - Mehrotra, S., Goel, M. K., Kukreja, A. K., & Mishra, B. N. (2007). Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. African Journal of Biotechnology, 6, 1484-1492. CR - Murthy, H. N., Joseph, K. S., Paek, K. Y., & Park, S. Y. (2023). Bioreactor systems for micropropagation of plants: present scenario and future prospects. Frontiers in Plant Science, 14, 1159588. https://doi.org/10.3389/fpls.2023.1159588 CR - Nirmal, D., Teraiya, S., & Joshi, P. (2023). Liquid culture system: an efficient approach for sustainable micropropagation. Current Agriculture Research Journal, 11(1), 28-42. https://doi.org/10.12944/CARJ.11.1.03. CR - Nowakowska, K., Pińkowska, A., Siedlecka, E., & Pacholczak, A. (2022). The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of rhododendron ‘Kazimierz Odnowiciel’ in the in vitro cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 149, 675-684. https://doi.org/10.1007/s11240-021-02206-z CR - Pakyürek, M., & Hepaksoy, S. (2020). A research on micropropagation of Pixy rootstock. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 7(8), 146-159. https://doi.org/10.38065/euroasiaorg.31 CR - Preil W. (2005). General introduction: a personal reflection on the use of liquid media for in vitro culture. A. K. Hvoslef-Eide, & W. Preil (Ed.), Liquid Culture Systems for in vitro Plant Propagation içinde (1-18. ss.). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/1-4020-3200-5_1 CR - Shabani, Z., Moghadam, E. G., Abedi, B., & Tehranifar, A. (2015). The effect of plant growth regulators and their concentration in vitro on mass propagation of Myrobalan 29C rootstock. Journal of Horticulture and Forestry 7(3), 73-83. CR - Thakur, M., Sharma, V., & Luharch, R. (2021). Propagation of plum (Prunus salicina L.) cultivar Frontier in vitro through control of shoot tip necrosis (STN) and validation of genetic integrityusing ISSR markers. Plant Physiology Reports 26, 238-246. https://doi.org/10.1007/s40502-021-00580-6 CR - Uğur, R., Paydaş, S., & Saridas, M. A. (2023). Rootstock breeding and rootstock-scion interaction in Prunus species. Journal of Erciyes Agriculture and Animal Science, 6(2), 7-10. CR - Van Staden, J., Zazimalova E., & George, E. F. (2008). Plant growth regulators II: cytokinins, their analogues and antagonists. E. F. George, M. A. Hall, & G. J. De Clark (Ed.), Plant Propagation by Tissue Culture 3rd Edition Volume 1. The Background içinde (205-226 ss.). Dordrecht, The Netherlands: Springer. CR - Westwood, A. D. (1980). Pixy, a new dwarfing rootstock for plums, Prunus domestica L. Journal of Horticultural Science, 55(4), 425-431. https://doi.org/10.1080/00221589.1980.11514954 CR - Wolella, E. K. (2017). Surface sterilization and in vitro propagation of Prunus domestica L. cv. Stanley using axillary buds as explants. Journal of Biotech Research 8, 18-26. UR - https://doi.org/10.29278/azd.1645026 L1 - https://dergipark.org.tr/tr/download/article-file/4632629 ER -