TY - JOUR T1 - Aviyonik Video Aktarımında Python ile ARINC 818 Simülasyon ve Analizi TT - Simulation and Analysis of ARINC 818 in Avionic Video Transmission Using Python AU - Belgrat, Muhammed Ali AU - Karal, Ömer PY - 2025 DA - November Y2 - 2025 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe Üniversitesi WT - DergiPark SN - 2149-3367 SP - 1372 EP - 1385 VL - 25 IS - 6 LA - tr AB - Makale, aviyonik sistemlerde yüksek bant genişliği ve düşük gecikme süresi gibi avantajlar sunan ARINC 818 (Aviyonik Dijital Video Veri Yolu - ADVB) standardının Python tabanlı bir simülasyon ortamı ile modellenmesini sunmaktadır. Hali hazırda bu protokolün mevcut veya uygulanmış simülasyon modelleri bulunmamaktadır. Geliştirilen araç, kullanıcıdan alınan video parametrelerini ARINC 818 standardına uygun biçimde işleyerek model tabanlı bir simülasyon yaklaşımıyla standardın işleyişini göstermektedir. Bu simülasyon gerçek donanım üzerinde koşmak yerine, standardın paket yapısı ve veri akış mekanizmalarının yazılımsal olarak modellemesini sağlar, böylece standardın zamanlama mekanizmalarının ve veri yapılarının ayrıntılı biçimde analiz edilmesine olanak tanır. Etkileşimli ve görsel yapısı sayesinde mühendisler, araştırmacılar ve öğrenciler için hem öğretici hem de tasarım öncesi değerlendirme süreçlerinde kullanılabilecek esnek bir platform sunmaktadır. Bu yönüyle çalışma, ARINC 818’in anlaşılmasını kolaylaştıran ve mühendislik uygulamalarına katkı sağlayan öğretici bir kaynak niteliğindedir. KW - ARINC 818 KW - Aviyonik Dijital Video Veri Yolu KW - Python KW - Simülasyon ve analiz N2 - This paper presents the modeling of the ARINC 818 standard (Avionics Digital Video Bus - ADVB), which offers advantages such as high bandwidth and low latency in avionics systems, through a Python-based simulation environment. Currently, there are no existing or implemented simulation models for this standard. The developed tool processes video parameters provided by the user in accordance with the ARINC 818 standard and demonstrates the standard’s operation through a model-based simulation approach. Rather than running on actual hardware, the simulation provides a software-based model of the standard’s packet structure and data flow mechanisms, enabling a detailed analysis of its timing characteristics and data structures. With its interactive and visual structure, the tool provides a flexible platform suitable for engineers, researchers, and students, serving both educational purposes and pre-design evaluation processes. In this regard, the study serves as an educational resource that facilitates understanding of the ARINC 818 standard and supports its application in engineering practices. CR - Aslan, E., Arserim, M.A. and Uçar, A., 2024. Ayak bileği stratejisi kullanarak Robotis-OP2 için itme kurtarma kontrol yöntemlerinin karşılaştırılması. Journal of the Faculty of Engineering & Architecture of Gazi University, 39(4), 2551. https://doi.org/10.17341/gazimmfd.1359434 CR - Alexander, J. and Grunwald, P., 2019. ARINC 818 Revision 3. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, ABD. https://doi.org/10.1109/DASC43569.2019.9081760 CR - Alexander, J. and Keller, T., 2007. Using ARINC 818 Avionics Digital Video Bus (ADVB) for Military Displays. Proceedings of SPIE - The International Society for Optical Engineering, 6558. https://doi.org/10.1117/12.720041 CR - Alexander, J. and Keller, T., 2011. ARINC 818 for Video and Display Control. Proceedings of SPIE - Display Technologies and Applications for Defense, Security, and Avionics V; and Enhanced and Synthetic Vision, 8042, 80420L. https://doi.org/10.1117/12.884261 CR - Aslan, S.N., Özalp, R., and Uçar, A., 2022. New CNN and hybrid CNN-LSTM models for learning object manipulation of humanoid robots from demonstration. Cluster Computing, 25, 1575–1590. https://doi.org/10.1007/s10586-021-03348-7 CR - Bisson, K., 2007. Arinc-818 Testing for Avionics Applications. 2007 IEEE Autotestcon, 2007. https://doi.org/10.1109/AUTEST.2007.4374236 CR - Değirmenci, A. and Karal, Ö., 2022. iMCOD: Incremental multi-class outlier detection model in data streams. Knowledge-Based Systems, 258, 109950. https://doi.org/10.1016/j.knosys.2022.109950 CR - Gadde, M., 2024. Testing, Simulating and Validating ARINC 818. Aerospace Testing International, 2024, 100–101. https://doi.org/10.12968/S1478-2774(25)50026-1 CR - Gayretli, M. G., 2023. OMNET++ Simulation Model for Integrated Modular Avionics, Master's Thesis, Istanbul Technical University, Graduate School of Defence Technologies, Istanbul, 84 pages. CR - Grunwald, P., 2014. ARINC 818 Specification Revisions Enable New Avionics Architectures. Proceedings of SPIE - Display Technologies and Applications for Defense, Security, and Avionics VIII, 9086, 908608. https://doi.org/10.1117/12.2050965 CR - Grunwald, P., 2013. What's New in ARINC 818 Supplement 2. 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC), 2013. https://doi.org/10.1109/DASC.2013.6712534 CR - Keller, T. and Alexander, J., 2009. Applications of ARINC 818 in Avionics Video Systems. SAE International Journal of Aerospace, 2(1), 95–102. https://doi.org/10.4271/2009-01-3141 CR - Keller, T. and Finnegan, D., (2024). Standardizing Video-Based Avionics and Mission Systems around the ARINC 818-3 Video Bus. 2024 AIAA DATC/IEEE 43rd Digital Avionics Systems Conference (DASC). https://doi.org/10.1109/DASC62030.2024.10748847 CR - Keller, T. and Grunwald, P., 2014. ARINC 818 Adds Capabilities for High-Speed Sensors and Systems. Proceedings of SPIE - Infrared Technology and Applications XL, 9070, 90703F. https://doi.org/10.1117/12.2050972 CR - Krotov, A., 2024. Development of Optical Communication Systems with High-Reliability Optical Sensors, Doctoral Thesis, Riga Technical University, Riga, Latvia, 119 pages. CR - Kılıç, C., Değirmenci, A. and Karal, Ö., 2024. Segmentation of the Area Between Anterior and Posterior Vertebral Elements in Axial MR Images Using U-Net. 2024 Innovations in Intelligent Systems and Applications Conference (ASYU), Ankara, Türkiye. https://doi.org/10.1109/ASYU62119.2024.10756992 CR - Yalman, Y., Uyanık, T., Atlı, İ., Tan, A., Bayındır, K.Ç., Karal, Ö., Golestan, S., and Guerrero, J.M., 2022. Prediction of Voltage Sag Relative Location with Data-Driven Algorithms in Distribution Grid. Energies, 15(18), 6641. https://doi.org/10.3390/en15186641 CR - Zhang, X., Liu, H., & Zhan, R., 2025. Avionics System Interface and Image Automation Testing Platform. Proceedings of SPIE – The International Conference Optoelectronic Information and Optical Engineering (OIOE2024), 13513, 135133E. https://doi.org/10.1117/12.3049162 CR - Zimmerman, M., 2017. High Bandwidth, Real-Time Video Transport with ARINC 818. Proceedings of SPIE - Real-Time Image and Video Processing 2017, 10223, 102230B. https://doi.org/10.1117/12.2262794 CR - Wood, R. B., & Howells, P. J., 2015. Head-Up Display. Digital Avionics Handbook, 3rd ed., edited by C. R. Spitzer, U. Ferrell, and T. Ferrell, CRC Press. https://doi.org/10.1201/b19009 CR - ARINC 818 Ecosystem, https://www.arinc818.com/applications/, (23.12.2024) CR - ARINC 818 PRODUCT SUITE, https://www.greatrivertech.com/arinc-818-products, (10.04.2025) CR - ARINC 818 Solutions, https://www.iwavesystems.com/product-category/product-solutions/avionics/arinc818-solutions/, (10.04.2025) CR - ARINC 818 Solutions, https://www.techway.com/c/arinc-818-solutions/, (10.04.2025) CR - ARINC 818 Streaming IP Core, https://newwavedesign.com/products/ip-cores/arinc-818-streaming-ip-core/, (10.04.2025) CR - Defence and Aerospace, https://www.logic-fruit.com/solutions/defence-and-aerospace/, (10.04.2025) UR - https://dergipark.org.tr/tr/pub/akufemubid/issue//1645113 L1 - https://dergipark.org.tr/tr/download/article-file/4633024 ER -