TY - JOUR T1 - Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10'un Koruyucu Rolü TT - Protective Role of Coenzyme Q10 in Modulating Apoptosis, Necrosis, and Autophagy Pathways Induced by Cyclophosphamide in Rat TesticularTissue AU - Yüksek, Veysel AU - Dede, Semiha AU - Usta, Ayşe AU - Koşal, Volkan PY - 2025 DA - September Y2 - 2025 DO - 10.21597/jist.1646028 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Iğdır Üniversitesi WT - DergiPark SN - 2536-4618 SP - 798 EP - 808 VL - 15 IS - 3 LA - tr AB - Siklofosfamid (CPC) kanser tedavisinde sıklıkla kullanılan en eski antikanser ilaçlarından biridir. CPC’nin testis, spermatogenez, üreme hormonları üzerinde olumsuz etkileri olduğu bilinmektedir. Bu çalışma, infertilite tedavisinde kullanılan ve testis ile seminal sıvıda doğal olarak bulunan Koenzim Q10’un (CoQ10), CPC'nin testis dokusunda oluşturduğu hasarın onarılmasına etkisini belirlemeyi amaçlamıştır. 30 Albino Wistar erkek sıçan, her grupta 6 hayvan olacak şekilde 5 gruba [Kontrol, Siklofosfamid (CPC), Koenzim Q10 (CoQ10), CPC + CoQ10-I (CQ-I), CPC + CoQ10-II (CQ-II)] ayrıldı. Apoptotik (kaspaz-8, kaspaz-9, kaspaz-3, BAX, BCL2, ve BAK1), otofajik (ATG3, ATG5 ve LC3) ve nekrotik (RIPK1) hücre ölüm mekanizmalarındaki kavşak genlerin mRNA ekspresyon düzeyleri belirlendi. Toplam mRNA'dan cDNA sentezlendi. mRNA gen ekspresyon seviyeleri RT-qPCR ile tespit edildi. Tüm grup çalışmaları için p<0.05 istatistiksel olarak anlamlı kabul edildi. CPC’nin kontrol grubuna göre kaspaz-9, kaspaz-3 ve BAK1 mRNA düzeylerini artırdığı tespit edilmiştir (p<0.05). CPC ile birlikte CoQ10 uygulandığında, kaspaz-9, kaspaz-3 ve BAK1 genlerinin ekspresyon seviyelerini düşürdüğü (p<0.05) tespit edilmiştir. Ayrıca, BCL-2 gen ekspresyonunda istatistiksel olarak anlamlı bir artış (p<0.05) gözlemlenmiştir. Hem kontrol grubuna hem de CPC grubuna kıyasla CoQ10 uygulamasının BAX/BCL-2 oranını istatistiksel olarak azalttığı (p<0.05) ortaya konulmuştur. CPC, ATG3 ve LC3 mRNA ekspresyonunu düşürmüş, ancak CPC ile birlikte CoQ10 uygulaması LC3 ekspresyonunu artırmıştır (p<0.05); ayrıca RIPK1 seviyesi CQ-I grubunda CPC'ye göre azalmıştır (p<0.05). Sonuç olarak, CoQ10’un, siklofosfamidin (CPC) neden olduğu apoptozu düşürdüğü, otofajiyi düzenlendiği ve nekroptozu önlemede rol oynadığı ve hücre sağkalımını desteklediği tespit edilmiştir. Ancak klinik uygulamalar için daha geniş ve uzun vadeli çalışmalar gerekmektedir. KW - Siklofosfamid KW - KoenzimQ10 KW - Kaspaz-3 KW - Kaspaz-9 KW - ATG3 KW - LC3 N2 - Cyclophosphamide (CPC) is one of the oldest anticancer drugs frequently used in cancer treatment. However, CPC is known to have adverse effects on the testis, spermatogenesis, and reproductive hormones. This study aimed to investigate the effect of Coenzyme Q10 (CoQ10), a compound naturally found in the testis and seminal fluid and used in infertility treatment, on repairing the damage caused by CPC in testicular tissue. Thirty male Wistar Albino rats were divided into five groups, each consisting of six animals: Control, CPC, CoQ10, CPC + CoQ10-I (CQ-I), and CPC + CoQ10-II (CQ-II). The mRNA expression levels of junctional genes were detected in apoptotic (caspase-8, caspase-9, caspase-3, BAX, BCL2, and BAK1), autophagic (ATG3, ATG5, and LC3), and necrotic (RIPK1) cell death mechanisms. cDNA was synthesized from total mRNA, and the gene expression levels of apoptosis markers were determined by RT-qPCR. Statistical significance was set at p<0.05. CPC was found to upregulate caspase-9, caspase-3, and BAK1 mRNA levels compared to the control group (p<0.05). However, co-administration of CoQ10 with CPC significantly reduced the expression levels of caspase-9, caspase-3, and BAK1 (p<0.05). Additionally, a significant increase in BCL-2 gene expression was observed (p<0.05). CoQ10 treatment reduced the BAX/BCL-2 ratio compared to the control and CPC groups (p<0.05). CPC reduced ATG3 and LC3 mRNA expression, but co-administration of CPC with CoQ10 increased LC3 expression (p<0.05); additionally, RIPK1 levels were lower in the CQ-I group compared to CPC (p<0.05). In conclusion, CoQ10 was found to reduce CPC-induced apoptosis, regulate autophagy, and prevent necroptosis, promoting cell survival. However, larger and longer-term studies are required for clinical implementation. CR - Abdi, M., Fadaee, M., Jourabchi, A., Karimzadeh, H., & Kazemi, T. (2024). Cyclophosphamide-Induced Infertility and the Impact of Antioxidants. American journal of reproductive immunology (New York, N.Y. : 1989), 92(6), e70014. https://doi.org/10.1111/aji.70014 CR - Ahlmann, M., & Hempel, G. (2016). The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy. Cancer Chemotherapy and Pharmacology, 78(4), 661-671. https://doi.org/10.1007/s00280-016-3152-1 CR - Barcelos, I. P. de., & Haas, R. H. (2019). CoQ10 and aging. Biology, 8(2), 28. https://doi.org/10.3390/biology8020028 CR - Bentinger, M., et al. (2007). The antioxidant role of coenzyme Q. Mitochondrion, 7(S41-S50). CR - Brock, N., & Wilmanns, H. (1958). Effect of a cyclic nitrogen mustard-phosphamidester on experimentally induced tumors in rats; chemotherapeutic effect and pharmacological properties of B518 ASTA [German]. Deutsche Medizinische Wochenschrift, 83, 453-458. CR - Cao, Y., Wang, X., Li, S., Wang, H., Yu, L., & Wang, P. (2017). The effects of L-carnitine against cyclophosphamide-induced injuries in mouse testis. Basic & Clinical Pharmacology & Toxicology, 120(2), 152-158. https://doi.org/10.1111/bcpt.12679 CR - Chomczynski, P., & Mackey, K. (1995). Modification of the TRIZOL reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques, 19(6), 942-945. CR - Diemer, T., Allen, J. A., Hales, K. H., & Hales, D. B. (2003). Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology, 144(7), 2882-2891. https://doi.org/10.1210/en.2002-0090 CR - El-Khadragy, M., Al-Megrin, W. A., AlSadhan, N. A., Metwally, D. M., El-Hennamy, R. E., Salem, F. E. H., Kassab, R. B., & Abdel Moneim, A. E. (2020). Impact of Coenzyme Q10 Administration on Lead Acetate-Induced Testicular Damage in Rats. Oxidative medicine and cellular longevity, 2020, 4981386. https://doi.org/10.1155/2020/4981386 CR - Emadi, A., Jones, R. J., & Brodsky, R. A. (2009). Cyclophosphamide and cancer: golden anniversary. Nature reviews. Clinical oncology, 6(11), 638–647. https://doi.org/10.1038/nrclinonc.2009.146 CR - Fusco, R., Salinaro, A. T., Siracusa, R., D’Amico, R., Impellizzeri, D., Scuto, M., Ontario, M. L., Crea, R., Cordaro, M., Cuzzocrea, S., Di Paola, R., & Calabrese, V. (2021). Hidrox® counteracts cyclophosphamide-induced male infertility through NRF2 pathways in a mouse model. Antioxidants, 10(5), 778. https://doi.org/10.3390/antiox10050778 CR - Gajjar, R., Miller, S. D., Meyers, K. E., & Ginsberg, J. P. (2015). Fertility preservation in patients receiving cyclophosphamide therapy for renal disease. Pediatric nephrology (Berlin, Germany), 30(7), 1099–1106. https://doi.org/10.1007/s00467-014-2897-1 CR - Hargreaves, I., Heaton, R. A., & Mantle, D. (2020). Disorders of human coenzyme Q10 metabolism: An overview. International Journal of Molecular Sciences, 21(18), 6695. https://doi.org/10.3390/ijms21186695 CR - Irani, S., Zhandi, M., Sadeghi, M., Yousefi, A. R., Marzban, H., & Rafieian-Naeini, H. R. (2022). The effect of dietary supplementation of coenzyme Q10 on reproductive variables of cadmium-challenged male Japanese quails (Coturnix Japonica). Veterinary Medicine and Science. https://doi.org/10.1002/vms3.990 CR - Kehe, K., Balszuweit, F., Steinritz, D., & Thiermann, H. (2009). Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology, 263(1), 12–19. https://doi.org/10.1016/j.tox.2009.01.019 CR - Koşal, V., Rua, İ., Yüksek, V., & Keleş, Ö. F. (2023). Investigation of the effect of Coenzyme-Q10 on cyclophosphamide-induced testicular damage in male rats. Revista Cientifica de la Facultad de Veterinaria, 33(2), 1-7. CR - Li, J., You, Y., Zhang, P., Huang, X., Dong, L., Yang, F., Yu, X., & Chang, D. (2022). Qiangjing tablets repair of blood-testis barrier dysfunction in rats via regulating oxidative stress and p38 MAPK pathway. BMC Complementary Medicine and Therapies, 22(1), 133. https://doi.org/10.1186/s12906-022-03615-z CR - Littarru, G. P., Tiano, L., Belardinelli, R., & Watts, G. F. (2011). Coenzyme Q(10) , endothelial function, and cardiovascular disease. BioFactors (Oxford, England), 37(5), 366–373. https://doi.org/10.1002/biof.154 CR - Liu, X., Li, Q., Wang, Z., & Liu, F. (2021). Identification of abnormal protein expressions associated with mouse spermatogenesis induced by cyclophosphamide. Journal of Cellular and Molecular Medicine, 25(3), 1624-1632. https://doi.org/10.1111/jcmm.16263 CR - Livak, KJ., & Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25 (4), 402–408 CR - Masoumi, M., Salehi, M., Angaji, S. A., & Hashemi, M. (2021). Effects of coenzyme Q10 and diamond nanoparticles on ischemia-reperfusion-induced testicular damages in rats. Galen Medical Journal, 10, e2029. https://doi.org/10.31661/gmj.v10i0.2029 CR - Najafi, M., Cheki, M., Amini, P., Javad, A., Shabeeb, D., & Eleojo Musa, A. (2019). Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. International Journal of Reproductive BioMedicine, 17(12), 1-8. https://doi.org/10.18502/ijrm.v17i12.5791 CR - Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.). Macmillan Learning. CR - Özatik, F. Y., Özatik, O., Tekşen, Y., Yiğitaslan, S., & Ari, N. S. (2021). Protective and therapeutic effect of hydrogen sulfide on hemorrhagic cystitis and testis dysfunction induced with cyclophosphamide. Turkish Journal of Medical Sciences, 51(3), 1530-1542. https://doi.org/10.3906/sag-2003-10 CR - Potnuri, A. G., Allakonda, L., & Lahkar, M. (2018). Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 101, 174–180. https://doi.org/10.1016/j.biopha.2018.02.068 CR - Pravst, I., Žmitek, K., & Žmitek, J. (2010). Coenzyme Q10 contents in foods and fortification strategies. Critical Reviews in Food Science and Nutrition, 50(4), 269-280. CR - Reagan‐Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB journal, 22(3), 659-661. CR - Smorag, L., Zheng, Y., Nolte, J., Zechner, U., Engel, W., & Pantakani, D. V. K. (2012). MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for stage-specifically expressed miRNA-221, -203, and -34b-5p mediated spermatogenesis regulation. Biology of the Cell, 104(11), 677-692. https://doi.org/10.1111/boc.201200014 CR - Üstündağ H. (2023). The Role of Antioxidants in Sepsis Management: A Review of Therapeutic Applications. Eurasian Mol Biochem Sci., 2(2):38-48. CR - Wu, Y., Li, H., Zhao, X., Baki, G., Ma, C., Yao, Y., Li, J., Yao, Y., & Wang, L. (2022). Differential expression of circRNAs of testes with high and low sperm motility in Yili geese. Frontiers in Genetics, 13, 970097. https://doi.org/10.3389/fgene.2022.970097 CR - Yalçin, A., Keleş, H., Kahraman, T., Bozkurt, M. F., & Aydın, H. (2020). Protective effects of ellagic acid against chemotherapy-induced hepatotoxicity. Duzce Medical Journal, 22(2), 124-130.. UR - https://doi.org/10.21597/jist.1646028 L1 - https://dergipark.org.tr/tr/download/article-file/4637046 ER -