TY - JOUR T1 - Investigation of the Optical Properties of Bovine Tissues at 635 nm: Integrating Sphere Measurements and Monte Carlo Simulations TT - İnek Dokularının 635 nm'deki Optik Özelliklerinin Araştırılması: Toplayıcı Küre Ölçümleri ve Monte Carlo Simülasyonları AU - Arslan, Halil AU - Alsheikh, Abdulrahman PY - 2025 DA - September Y2 - 2025 DO - 10.2339/politeknik.1649712 JF - Politeknik Dergisi PB - Gazi Üniversitesi WT - DergiPark SN - 2147-9429 SP - 1 EP - 1 LA - en AB - Understanding the optical properties of biological tissues is essential for optimizing light-based medical applications such as phototherapy, laser surgery, and biomedical imaging. In this study, the absorption coefficient (μₐ) and reduced scattering coefficient (μₛ′) of bovine muscle, heart, brain, kidney and fat tissues were determined at 635 nm using an integrating sphere system and Inverse Adding-Doubling (IAD) method. The experimental results were then used as input parameters for Monte Carlo (MCML) simulations to model light propagation and determine fluence rate distributions within the tissue models. The results demonstrated significant variations in optical properties across different types of tissue, with brain and fat tissues exhibiting lower penetration depths due to higher scattering coefficients. The findings align with previous literature while providing a more comprehensive evaluation through the integration of experimental and computational approaches. KW - Tissue KW - Integrating Sphere System KW - IAD KW - Monte Carlo Simulation N2 - Biyolojik dokuların optik özelliklerinin bilinmesi, fototerapi, lazer cerrahisi ve biyomedikal görüntüleme gibi ışık tabanlı tıbbi uygulamaları optimize etmek için önemlidir. Bu çalışmada, inekten alınan kas, kalp, beyin, böbrek ve yağ dokularının 635 nm'deki soğurma katsayısı (μₐ) ve indirgenmiş saçılma katsayısı (μₛ′) değerleri, entegre küre sistemi ve Ters Ekleme-Katlama (IAD) yöntemi kullanılarak belirlendi. Deneysel sonuçlar, ışığın doku modelleri içindeki yayılımını modellemek ve optik doz dağılımlarını belirlemek için MCML simülasyonlarında giriş parametreleri olarak kullanıldı. Farklı doku türlerinin optik özelliklerinin farklı olduğu, beyin ve yağ dokularının görece yüksek saçılma katsayıları nedeniyle daha düşük penetrasyon derinlikleri görülmüştür. Deney ve Monte Carlo simülasyonlarının birlikte kullanıldığı bu çalışmada literatürle uyumlu sonuçlar elde edilmiştir. CR - [1] Fodor, L., Ullmann, Y., & Elman, M. Aesthetic applications of intense pulsed light (pp. 11-20). London: Springer, (2011). CR - [2] Ash, C., Dubec, M., Donne, K., & Bashford, T. “Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods”, Lasers in Medical Science, 32, 1909-1918, (2017). CR - [3] Tuchin, V. V. “Tissue optics and photonics: light-tissue interaction”, Journal of Biomedical Photonics & Engineering, 1(2), 98-134, (2015). CR - [4] Jacques, S. L. “Optical properties of biological tissues: a review”, Physics in Medicine & Biology, 58(11), R37, (2013). CR - [5] Cheong, W. F., Prahl, S. A., & Welch, A. J. “A review of the optical properties of biological tissues”, IEEE Journal of Quantum Electronics, 26(12), 2166–2185, (1990). CR - [6] Welch, A. J., & Van Gemert, M. J. (Eds.) Optical-thermal response of laser-irradiated tissue (Vol. 2) New York: Springer, (2011). CR - [7] Hamdy, O., Fathy, M., Al-Saeed, T. A., El-Azab, J., & Solouma, N. H. “Estimation of optical parameters and fluence rate distribution in biological tissues via a single integrating sphere optical setup”, Optik, 140, 1004-1009, (2017). CR - [8] Kienle, A., Lilge, L., Patterson, M. S., Hibst, R., Steiner, R., & Wilson, B. C. “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue”, Applied Optics, 35(13), 2304-2314, (1996). CR - [9] Prahl, S. A., van Gemert, M. J., & Welch, A. J. “Determining the optical properties of turbid media by using the adding–doubling method”, Applied Optics, 32(4), 559-568, (1993). CR - [10] De Vries, G., Beek, J. F., Lucassen, G. W., & Van Gemert, M. J. C. “The effect of light losses in double integrating spheres on optical properties estimation”, IEEE Journal of Selected Topics in Quantum Electronics, 5(4), 944-947, (1999). CR - [11] Pickering, J. W., Prahl, S. A., Van Wieringen, N., Beek, J. F., Sterenborg, H. J., & Van Gemert, M. J. “Double-integrating-sphere system for measuring the optical properties of tissue”, Applied Optics, 32(4), 399-410, (1993). CR - [12] Beek, J. F., Blokland, P., Posthumus, P., Aalders, M., Pickering, J. W., Sterenborg, H. J. C. M., & Van Gemert, M. J. C. “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm”, Physics in Medicine & Biology, 42(11), 2255, (1997). CR - [13] Pehlivanöz, B., & Arslan, H. “Estimation of optical parameters of chicken liver tissue via single integrating-sphere system”, Medical Technologies National Congress (TIPTEKNO) pp. 1-3, (2018). CR - [14] Martins, I. S., Silva, H. F., Lazareva, E. N., Chernomyrdin, N. V., Zaytsev, K. I., Oliveira, L. M., & Tuchin, V. V. “Measurement of tissue optical properties in a wide spectral range: a review”, Biomedical Optics Express, 14(1), 249-298, (2022). CR - [15] Krasnikov, I., Seteikin, A., & Roth, B. “Advances in the simulation of light–tissue interactions in biomedical engineering”, Biomedical Engineering Letters, 9, 327-337, (2019). CR - [16] Wang, L., Jacques, S. L., & Zheng, L. “MCML—Monte Carlo modeling of light transport in multi-layered tissues”, Computer Methods and Programs in Biomedicine, 47(2), 131-146, (1995). CR - [17] Shahin, A., Bachir, W. & El-Daher, M. S. “Optical investigation of bovine grey and white matters in visible and near-infrared ranges”, Polish Journal of Medical Physics and Engineering, 27(1), 99-107, (2021). CR - [18] Hamdy, O. & Mohammed, H. S. “Variations in tissue optical parameters with the incident power of an infrared laser”, PLoS One, 17(1), 0263164, (2022). CR - [19] Ren, N., Liang, J., Qu, X., Li, J., Lu, B., & Tian, J. “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues”, Optics Express, 18(7), 6811–6823, (2010). CR - [20] Moradi, M., & Chen, Y. “Monte Carlo simulation of diffuse optical spectroscopy for 3D modeling of dental tissues”, Sensors, 23(11), 5118, (2023). CR - [21] Adler, T. J., Nölke, J. H., Reinke, A., Tizabi, M. D., Gruber, S., Trofimova, D., ... & Maier-Hein, L. “Application-driven validation of posteriors in inverse problems”, Medical Image Analysis, 101, 103474, (2025). CR - [22] Arslan, H., & Pehlivanoz, B. “Effect of purification, dehydration, and coagulation processes on the optical parameters of biological tissues”, Chinese Optics Letters, 19(1), 011701, (2021). CR - [23] Lanka, P., Francis, K. J., Kruit, H., Farina, A., Cubeddu, R., Sekar, S. K. V., ... & Pifferi, A. “Optical signatures of radiofrequency ablation in biological tissues”, Scientific Reports, 11(1), 6579, (2021). CR - [24] Kienle, A., Lilge, L., Patterson, M. S., Hibst, R., Steiner, R., & Wilson, B. C. “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue”, Applied Optics, 35(13), 2304-2314, (1996). CR - [25] Botelho, A. R., Silva, H. F., Martins, I. S., Carneiro, I. C., Carvalho, S. D., Henrique, R. M., ... & Oliveira, L. M. “Fast calculation of spectral optical properties and pigment content detection in human normal and pathological kidney”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 286, 122002, (2023). UR - https://doi.org/10.2339/politeknik.1649712 L1 - https://dergipark.org.tr/tr/download/article-file/4653698 ER -