TY - JOUR T1 - Rhedogical Studies of Bio-Nanocomposites TT - Biyo-Nanokompozitlerin Redogik Çalışmaları AU - Altuner, Elif Esra AU - Şen, Fatih PY - 2025 DA - August Y2 - 2025 JF - Journal of Kocaeli Health and Technology University JO - JoKohTU PB - Kocaeli Sağlık ve Teknoloji Üniversitesi WT - DergiPark SN - 2980-1591 SP - 14 EP - 32 VL - 3 IS - 2 LA - en AB - The rheological studies of nanocomposites obtained from biopolymers, addressed herein, have been explained with the support of various studies. Various colloids, carbon nanotubes, multi-walled nanotubes, micellar solutions, and granular flows obtained from bio nanocomposite materials are explained in the literature in this chapter. It has been reported that colloids shift towards mixed proportional regimes and volumetric interactions are more effective. Organic elephants have an independent angular velocity and their complex state behaved like a solid. Epoxy forms of carbon nanotubes are emphasized. When trisodium phosphate, titanium dioxide, and nanoparticles are combined with organic fillers, a structure that gives more hardness is formed. In the characterizations made on multi-walled carbon nanotubes, the structure of these materials was examined and the rhedogical behavior was tried to be expanded. In the structure of granular flows, some images were weak in resonance images, while different results were obtained in others. In the future, the expansion of these studies will further illuminate the academic studies of the rheology of nanomaterials KW - Rhedogical studies KW - nanocomposites KW - bio-nanocomposites N2 - Burada ele alınan biyopolimerlerden elde edilen nanokompozitlerin reolojik çalışmaları çeşitli çalışmalarla desteklenerek açıklanmıştır. Bu bölümde literatürde biyo nanokompozit malzemelerden elde edilen çeşitli kolloidler, karbon nanotüpler, çok duvarlı nanotüpler, misel çözeltileri ve granüler akışlar açıklanmıştır. Kolloidlerin karışık oransal rejimlere doğru kaydığı ve hacimsel etkileşimlerin daha etkili olduğu bildirilmiştir. Organik filler bağımsız açısal hıza sahiptir ve kompleks halleri katı gibi davranmıştır. Karbon nanotüplerin epoksi formları vurgulanmıştır. Trisodyum fosfat, titanyum dioksit ve nanopartiküller organik dolgularla birleştirildiğinde daha fazla sertlik veren bir yapı oluşmaktadır. Çok duvarlı karbon nanotüpler üzerinde yapılan karakterizasyonlarda bu malzemelerin yapısı incelenmiş ve redogik davranış genişletilmeye çalışılmıştır. Granüler akışların yapısında rezonans görüntülerinde bazı görüntüler zayıf iken bazılarında farklı sonuçlar elde edilmiştir. Gelecekte, bu çalışmaların genişletilmesi nanomalzemelerin reolojisinin akademik çalışmalarını daha da aydınlatacaktır. CR - 1. Arfat, Y. A., Ahmed, J., Hiremath, N., Auras, R., & Joseph, A. (2017). Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocolloids, 62, 191–202. https://doi.org/10.1016/j.foodhyd.2016.08.009 CR - 2. Arfat, Y. A., Benjakul, S., Prodpran, T., & Osako, K. (2014). Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocolloids, 39, 58–67. https://doi.org/10.1016/j.foodhyd.2013.12.028 CR - 3. Embuscado, M. E., & Huber, K. C. (2009). Edible Films and Coatings for Food Applications. Springer. https://doi.org/10.1007/978-0-387-92824-1 CR - 4. Park, H. J., & Chinnan, M. S. (1995). Gas and water vapor barrier properties of edible films from protein and cellulosic materials. Journal of Food Engineering, 25(4), 497–507. https://doi.org/10.1016/0260-8774(94)00029-9 CR - 5. Jorge, M. F. C., Caicedo Flaker, C. H., Nassar, S. F., Moraes, I. C. F., Bittante, A. M. Q. B., & Do Amaral Sobral, P. J. (2014). Viscoelastic and rheological properties of nanocomposite-forming solutions based on gelatin and montmorillonite. Journal of Food Engineering, 120(1), 81–87. https://doi.org/10.1016/j.jfoodeng.2013.07.007 CR - 6. Lagarón, J. M., Cabedo, L., Cava, D., Feijoo, J. L., Gavara, R., & Gimenez, E. (2005). Improving packaged food quality and safety. Part 2: Nanocomposites. Food Additives and Contaminants, 22(10), 994–998. https://doi.org/10.1080/02652030500239656 CR - 7. Mu, C., Li, X., Zhao, Y., Zhang, H., Wang, L., & Li, D. (2013). Freezing/thawing effects on the exfoliation of montmorillonite in gelatin-based bionanocomposite. Journal of Applied Polymer Science, 128(5), 3141–3148. https://doi.org/10.1002/app.38511 CR - 8. Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M. (2013). Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. Journal of Food Engineering, 117(1), 26–33. https://doi.org/10.1016/j.jfoodeng.2013.01.042 CR - 9. Rhim, J. W. (2012). Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film. Journal of Food Science, 77(12), N66–N73. https://doi.org/10.1111/j.1750-3841.2012.02988.x CR - 10. Thomazine, M., Carvalho, R. A., & Sobral, P. J. A. (2005). Physical properties of gelatin films plasticized by blends of glycerol and sorbitol. Journal of Food Science, 70(3), E172–E176. https://doi.org/10.1111/j.1365-2621.2005.tb07132.x CR - 11. Nur Tatli, H., Beniz Gunduz, S., Sahin, M., Esra Altuner, E., & Ali Dar, U. (2024). Fluorimetric methods for determination of aluminum in water resources utilizing newly synthesized N,N'-bis(2,5-dihydroxybenzylidene)-4,4′-diamino diphenyl ether. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 321, 124726. https://doi.org/10.1016/J.SAA.2024.124726 CR - 12. Uzumer, T. Y., Cete, S., Tekeli, Y., & Altuner, E. E. (2024). Development of an amperometric biosensor that can determine the amount of glucose in the blood using the glucose oxidase enzyme: Preparation of polyaniline–polypyrrole–poly(sodium-4-styrenesulfonate) film. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/BAB.2640 CR - 13. Chauhan, G., Verma, A., Hazarika, A., & Ojha, K. (2017). Rheological, structural and morphological studies of Gum Tragacanth and its inorganic SiO2 nanocomposite for fracturing fluid application. Journal of the Taiwan Institute of Chemical Engineers, 80, 978–988. https://doi.org/10.1016/j.jtice.2017.08.039 CR - 14. Zhao, S.-Y., Jie-Nian(鄢捷年, Y., Shu, Y., & Zhang, H.-X. (2008). Rheological properties of oil-based drilling fluids at high temperature and high pressure. Journal of Central South University of Technology. https://doi.org/10.1007/s11771−008−399−7 CR - 15. Kuan, H. C., Ma, C. C. M., Chang, W. P., Yuen, S. M., Wu, H. H., & Lee, T. M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65(11–12), 1703–1710. https://doi.org/10.1016/j.compscitech.2005.02.017 CR - 16. Thostenson, E. T., Ren, Z., & Chou, T. W. (2001). Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 61(13), 1899–1912. https://doi.org/10.1016/S0266-3538(01)00094-X CR - 17. Haggenmueller, R., Gommans, H. H., Rinzler, A. G., Fischer, J. E., & Winey, K. I. (2000). Aligned single-wall carbon nanotubes in composites by melt processing methods. Chemical Physics Letters, 330(3–4), 219–225. https://doi.org/10.1016/S0009-2614(00)01013-7 CR - 18. Gommans, H. H., Alldredge, J. W., Tashiro, H., Park, J., Magnuson, J., & Rinzler, A. G. (2000). Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy. Journal of Applied Physics, 88(5), 2509–2514. https://doi.org/10.1063/1.1287128 CR - 19. Twardow, T. E. (Ed.). (n.d.). Nanocomposites past and future. In Introduction to Nanocomposite Materials: Properties, Processing and Characterization. CR - 20. Sen, B., Demirkan, B., Şavk, A., Karahan Gülbay, S., & Şen, F. (2018). Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 43(38), 17984–17992. https://doi.org/10.1016/j.ijhydene.2018.07.122 CR - 21. Ayrancı, R., Demirkan, B., Sen, B., Şavk, A., Ak, M., & Şen, F. (2019). Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection. Materials Science and Engineering: C. https://doi.org/10.1016/j.msec.2019.02.040 CR - 22. Yildiz, Y., et al. (2017). Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect, 2(2), 697–701. https://doi.org/10.1002/slct.201601608 CR - 23. Khare, A., & Deshmukh, S. (2006). Studies toward producing eco-friendly plastics. Journal of Plastic Film and Sheeting, 22(3), 193–211. https://doi.org/10.1177/8756087906067324 CR - 24. Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2009). Progress in bionanocomposite materials. In Functional Polymer Composites with Nanoclays (pp. 149–189). https://doi.org/10.1142/9789814280525_0003 CR - 25. European Bioplastics e.V. (2008). European Bioplastics. Retrieved May 15, 2021, from https://www.european-bioplastics.org/?id=182 CR - 26. Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2005). Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 15(35–36), 3650–3662. https://doi.org/10.1039/b505640n CR - 27. Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2007). Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, 19(10), 1309–1319. https://doi.org/10.1002/adma.200602328 CR - 28. Hippel, P. H. V. (1965). The macromolecular chemistry of gelatin. Journal of the American Chemical Society, 87(8), 1824. https://doi.org/10.1021/ja01086a059 CR - 29. Orta, M. del M., Martín, J., Santos, J. L., Aparicio, I., Medina-Carrasco, S., & Alonso, E. (2020). Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation. Applied Clay Science, 105838. https://doi.org/10.1016/j.clay.2020.105838 CR - 30. Ruan, D., Zhang, L., Zhang, Z., & Xia, X. (2004). Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. Journal of Polymer Science Part B: Polymer Physics, 42(3), 367–373. https://doi.org/10.1002/polb.10664 CR - 31. Dursun, S., Erkan, N., & Yeşiltaş, M. (2010). Doğal biyopolimer bazlı (biyobozunur) nanokompozit filmler ve su ürünleri uygulamaları. Journal of Fisheries Sciences, 4(1), 50–77. https://doi.org/10.3153/jfscom.201006 CR - 32. Li, Q., Zhou, J., & Zhang, L. (2009). Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science Part B: Polymer Physics, 47(11), 1069–1077. https://doi.org/10.1002/polb.21711 CR - 33. Rhim, J. W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411–433. https://doi.org/10.1080/10408390600846366 CR - 34. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science. https://doi.org/10.1016/j.progpolymsci.2006.06.001 CR - 35. Adlim, M., Abu Bakar, M., Liew, K. Y., & Ismail, J. (2004). Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. Journal of Molecular Catalysis A: Chemical, 212(1–2), 141–149. https://doi.org/10.1016/j.molcata.2003.08.012 CR - 36. Torres-Giner, S., Ocio, M. J., & Lagaron, J. M. (2008). Development of active antimicrobial fiber-based chitosan polysaccharide nanostructures using electrospinning. Engineering in Life Sciences, 8(3), 303–314. https://doi.org/10.1002/elsc.200700066 CR - 37. Akbari, Z., Ghomashchi, T., & Moghadam, S. (2007). Improvement in food packaging industry with biobased nanocomposites. Berkeley Electronic Press. https://doi.org/10.2202/1556-3758.1120 CR - 38. Hsissou, R., Bekhta, A., Dagdag, O., El Bachiri, A., Rafik, M., & Elharfi, A. (2020). Rheological properties of composite polymers and hybrid nanocomposites. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04187 CR - 39. Mondragón, M., Arroyo, K., & Romero-García, J. (2008). Biocomposites of thermoplastic starch with surfactant. Carbohydrate Polymers, 74(2), 201–208. https://doi.org/10.1016/j.carbpol.2008.02.004 CR - 40. Hassanzadeh-Aghdam, M. K., Ansari, R., & Darvizeh, A. (2017). Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Composites Part A: Applied Science and Manufacturing, 96, 110–121. https://doi.org/10.1016/j.compositesa.2017.02.015 CR - 41. Haghgoo, M., Ansari, R., Hassanzadeh-Aghdam, M. K., & Nankali, M. (2019). Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibers and wavy carbon nanotubes considering tunneling resistivity. Composites Part A: Applied Science and Manufacturing, 126, 105616. https://doi.org/10.1016/j.compositesa.2019.105616 CR - 42. Bekhta, A., Hsissou, R., El Bouchiti, M., & El Harfi, A. (2016). Synthesis, structural, viscosimetric, and rheological study of a new trifunctional phosphorus epoxy prepolymer, tri-glycidyl ether tri-mercaptoethanol of phosphore (TGETMEP). Mediterranean Journal of Chemistry, 6(1), 665–673. https://doi.org/10.13171/mjc61/01610151105/bekhta CR - 43. Hsissou, R., Dagdag, O., Berradi, M., El Bouchti, M., Assouag, M., & Elharfi, A. (2019). Development rheological and anti-corrosion property of epoxy polymer and its composite. Heliyon, 5(11), e02789. https://doi.org/10.1016/j.heliyon.2019.e02789 CR - 44. Lim, H. T., Ahn, K. H., Hong, J. S., & Hyun, K. (2013). Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. Journal of Rheology, 57(3), 767–789. https://doi.org/10.1122/1.4795748 CR - 45. Zhao, Y., Haward, S. J., & Shen, A. Q. (2015). Rheological characterizations of wormlike micellar solutions containing cationic surfactant and anionic hydrotropic salt. Journal of Rheology, 59(5), 1229–1259. https://doi.org/10.1122/1.4928454 CR - 46. Haghgoo, M., Ansari, R., & Hassanzadeh-Aghdam, M. K. (2019). Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites. Composites Part B: Engineering, 167, 728–735. https://doi.org/10.1016/j.compositesb.2019.03.046 CR - 47. Hassanzadeh-Aghdam, M. K., Mahmoodi, M. J., Jamali, J., & Ansari, R. (2019). A new micromechanical method for the analysis of thermal conductivities of unidirectional fiber/CNT-reinforced polymer hybrid nanocomposites. Composites Part B: Engineering, 175, 107137. https://doi.org/10.1016/j.compositesb.2019.107137 CR - 48. Gaudino, D., Pasquino, R., & Grizzuti, N. (2015). Adding salt to a surfactant solution: Linear rheological response of the resulting morphologies. Journal of Rheology, 59(6), 1363–1375. https://doi.org/10.1122/1.4931114 CR - 49. Varga, Z., & Swan, J. W. (2015). Linear viscoelasticity of attractive colloidal dispersions. Journal of Rheology, 59(5), 1271–1298. https://doi.org/10.1122/1.4928951 CR - 50. de Cagny, H., Fall, A., Denn, M. M., & Bonn, D. (2015). Local rheology of suspensions and dry granular materials. Journal of Rheology, 59(4), 957–969. https://doi.org/10.1122/1.4919970 UR - https://dergipark.org.tr/tr/pub/jokohtu/issue//1652063 L1 - https://dergipark.org.tr/tr/download/article-file/4664500 ER -