@article{article_1652785, title={Malnütrisyon durumunun saptanmasında makine öğrenmesinin kullanılması}, journal={Sağlık Bilimlerinde Yapay Zeka Dergisi}, volume={5}, pages={21–31}, year={2025}, author={Ermiş, Dilay and Sabuncular, Güleren and Çelik, Zehra Margot}, keywords={algoritma, makine öğrenmesi, malnütrisyon, yetersiz beslenme, yapay zeka}, abstract={Bireyin beslenme durumu, vücut kompozisyonu ve fonksiyonel durumunun bir belirleyicisidir. Yetersiz beslenme yaşam kalitesini düşürür, hasta sonuçlarını, mortalite ve morbidite riskini artırır, hastanede kalış süresini ve maliyetleri olumsuz etkiler. Malnütrisyon, enerji, protein ve diğer besin öğelerinin eksikliğinin veya fazlalığının (veya dengesizliğinin) doku/vücut formu (vücut şekli, boyutu ve bileşimi) ve işlevi ile klinik sonuçlar üzerinde ölçülebilir olumsuz etkilere neden olduğu bir beslenme durumudur. Malnütrisyonun erken tanısı için malnütrisyon tarama ve tanı araçlarının geliştirilmesi, hastaların sağlığı, refahı ve uzun vadeli komplikasyonları önlemek için gereklidir. Hastane ortamında kullanılabilecek pek çok beslenme tarama aracı bulunmasına rağmen, en iyi aracın hangisi olduğu konusunda bir fikir birliği bulunmamakta ve tarama uygulamalarına yeterince uyulmadığı için etkin beslenme tedavisine ulaşılamamaktadır. Son yıllarda, makine öğrenimi yöntemleri, klinikte karar vermeye yardımcı olmak ve tedavinin kalitesini, etkinliğini iyileştirmek için birçok tıbbi alanda yaygın olarak uygulanmaktadır. Bu derlemede Pubmed, Google Scholar, Web of Science veri tabanlarında yetersiz beslenme, malnütrisyon, makine öğrenmesi, yapay zeka anahtar kelimeleri ile tarama yapılmıştır ve makine öğrenme yöntemlerinin malnütrisyon tanısında kullanımı incelenmiştir.}, number={2}, publisher={İzmir Katip Çelebi Üniversitesi}, organization={Bu çalışma herhangi bir kurum tarafından desteklenmemiştir}