TY - JOUR T1 - Experimental Investigation of the Use of Refrigerant in the Cooling System of the Internal Combustion Engine: Preliminary Study TT - İçten Yanmalı Motorun Soğutma Sisteminde Soğutucu Akışkan Kullanımının Deneysel İncelenmesi: Ön Çalışma AU - Kapıcıoğlu, Abdullah AU - Kayalı, Yavuz Selim AU - Yüksel, Tahsin PY - 2025 DA - September Y2 - 2025 DO - 10.35234/fumbd.1657782 JF - Fırat Üniversitesi Mühendislik Bilimleri Dergisi PB - Fırat Üniversitesi WT - DergiPark SN - 1308-9072 SP - 635 EP - 649 VL - 37 IS - 2 LA - en AB - A new cooling system has been designed to reduce the adverse effects of the cooling system used in internal combustion engines and to create a more efficient system. R134a gas was used as the refrigerant in the engine cooling system in the experimental setup set up for the preliminary study. The cooling effect of gas masses of different weights (400, 450, 500, 550, 600 g) filled into the cooling system for cooling the simulated cylinder fixed at different temperatures (50, 60, 70, 80, 90, 100, 110, 120 °C) was determined. By measuring the temperature and pressure values in the system, comparisons were made by calculating the heat transfer coefficient, fluid flow rate and heat transfer rates of the system. The most efficient fluid weight used in the study was determined as 550 g. In the system without a circulation pump, the pressure difference between the heat receiving and heat giving sections allows the refrigerant gas to circulate. It has been observed that this situation is made possible by the increase in the heat transfer coefficient depending on the temperature increase. The absence of a pump in the system will contribute to engine performance. Having the refrigerant in gaseous form will enable smaller engine structures, lower vehicle weight, less fuel consumption and less exhaust emissions. KW - Internal combustion engines KW - cooling system KW - R134a KW - refrigerants KW - heat transfer rate N2 - İçten yanmalı motorlarda kullanılan soğutma sisteminin olumsuz etkilerini azaltmak ve daha verimli bir sistem oluşturmak amacıyla yeni bir soğutma sistemi tasarlanmıştır. Ön çalışma için kurulan deney düzeneğinde, motor soğutma sisteminde soğutucu akışkan olarak R134a gazı kullanılmıştır. Farklı sıcaklıklarda (50, 60, 70, 80, 90, 100, 110, 120 °C) sabitlenmiş simüle edilmiş silindiri soğutmak için soğutma sistemine doldurulan farklı ağırlıklardaki (400, 450, 500, 550, 600 g) gaz kütlelerinin soğutma etkisi belirlenmiştir. Sistemdeki sıcaklık ve basınç değerleri ölçülerek sistemin ısı transfer katsayısı, akışkan debisi ve ısı transfer hızları hesaplanarak karşılaştırmalar yapılmıştır. Çalışmada kullanılan en verimli akışkan ağırlığı 550 g olarak belirlenmiştir. Sirkülasyon pompası olmayan sistemde, ısı alan ve ısı veren bölümler arasındaki basınç farkı, soğutucu gazın dolaşımına olanak sağlamaktadır. Bu durumun, sıcaklık artışına bağlı olarak ısı transfer katsayısının artmasıyla mümkün olduğu gözlemlenmiştir. Sistemde pompa bulunmaması, motor performansına katkı sağlayacaktır. Soğutucu akışkanın gaz halinde olması, daha küçük motor yapıları, daha düşük araç ağırlığı, daha az yakıt tüketimi ve daha az egzoz emisyonu sağlayacaktır. CR - Yuksel T, Kapıcıoğlu A. Experimental Investigation of the Effects on Engine Oil Temperature of Different Nanofluids Used in Vehicle Engine Cooling System. International Journal of Innovative Engineering Applications 2021;5(1);22-29. CR - Yuksel T, Kapıcıoğlu A. Experimental Investigation of the Effect of Nanofluid Supported Vehicle Engine Cooling System on Engine Emission Values. II. International Conference on Innovative Engineering Applications (CIEA’ 2021), Muş: 2021, p. 405–13. CR - Elsaid AM. Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. International Communications in Heat and Mass Transfer 2019; 108:104263. CR - Che Sidik NA, Witri Mohd Yazid MNA, Mamat R. Recent advancement of nanofluids in engine cooling system. Renewable and Sustainable Energy Reviews 2017;75:137–44. CR - Hussein AM, Bakar RA, Kadirgama K. Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Studies in Thermal Engineering 2014;2:50–61. CR - Karagöz Y, Köten H, Tunçer E, Pusat Ş. Effect of Al2O3 addition to an internal combustion engine coolant on heat transfer performance. Case Studies in Thermal Engineering 2022;31. CR - Hazar H, Telceken T, Sevinc H. An experimental study on emission of a diesel engine fuelled with SME (safflower methyl ester) and diesel fuel. Energy 2022;241. CR - Jadar R, Shashishekar KS, Manohara SR. Nanotechnology Integrated Automobile Radiator. Mater Today Proc 2017;4:12080–4. CR - Castillo Marcano SJ, Bensaid S, Deorsola FA, Russo N, Fino D. Nanolubricants for diesel engines: Related emissions and compatibility with the after-treatment catalysts. Tribol Int 2014;72:198–207. CR - Ettefaghi E, Ahmadi H, Rashidi A, Nouralishahi A, Mohtasebi SS. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. International Communications in Heat and Mass Transfer 2013;46:142–7. CR - Macián V, Tormos B, Olmeda P, Montoro L. Analytical approach to wear rate determination for internal combustion engine condition monitoring based on oil analysis. Tribol Int 2003;36:771–6. CR - Bağırov H, Can I, Öner C, Sugözü I, Kapıcıoğlu A. Experimental investigation the effects of mixture impoverished on the specific fuel consumption, engine performance and exhaust emissions a pre-combustion chamber gasoline engine. Journal of the Energy Institute 2015;88:205–8. CR - Patel H, Subhedar DG, Ramani D. Numerical Investigation of performance for Car Radiator Oval Tube. vol. 4. 2017. CR - Kula S, Bulut E, Altay E, Sümer O, Öztürk F. Smart cooling design using dual loop cooling to increase engine efficiency and decrease fuel emissions with artificial intelligence. Case Studies in Thermal Engineering 2022:102351. CR - Sabancı A, Işık A. İçten Yanmalı Motorlar. Ankara: Nobel Akademik; 2012. CR - Yardım MH. Motor Teknolojisi. Ankara: Nobel Akademik; 2015. CR - Kuyumcu İ. Motor Tekniği. Ankara: Hatiboğlu; 1999. CR - Bağırov H, Ertaş HA. İçten Yanmalı Pistonlu Motorlar Cilt 1. Sivas: Cumhuriyet Üniversitesi Yayınları; 2017. CR - Mathioulakis E, Belessiotis V. A New Heat-Pipe Type Solar Domestic Hot Water System. vol. 72. 2002. CR - Singh R, Mochizuki M, Yamada T, Nguyen T. Cooling of LED headlamp in automotive by heat pipes. Appl Therm Eng 2020;166. CR - Domiciano KG, Krambeck L, Henriques Mantelli MB. Development of thin loop heat pipe for compact electronics. Exp Therm Fluid Sci 2025;168. CR - Mayoof OT, Yasin NJ, Abedalh AS. Experimental investigation for utilization of U-shaped heat pipe heat exchanger in the air-conditioning system. International Communications in Heat and Mass Transfer 2025;163. CR - Lim H, Lee S, Lee J. Effective snow removal devices for road pavement using geothermal heat pipe. Appl Therm Eng 2025;265. CR - Li Z, Jiang H, Chen X, Liang K. Optimal refrigerant charge and energy efficiency of an oil-free refrigeration system using R134a. Appl Therm Eng 2020;164. https://doi.org/10.1016/j.applthermaleng.2019.114473. CR - Zhai R, Tan S, Zhuang Y, Wang Z, Ye B, Shi Y. Effect of flame retardant R134a on the flammability characteristics of R1234yf. Energy 2024;313. CR - Belman-Flores JM, Rangel-Hernández VH, Usón S, Rubio-Maya C. Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system. Energy 2017;132:116–25. CR - Vaghela JK. Comparative Evaluation of an Automobile Air - Conditioning System Using R134a and Its Alternative Refrigerants. Energy Procedia, vol. 109, Elsevier Ltd; 2017, p. 153–60. CR - Illán-Gómez F, García-Cascales JR. Experimental comparison of an air-to-water refrigeration system working with R134a and R1234yf. International Journal of Refrigeration 2019;97:124–31. CR - European Commission, Fluorinated greenhouse gases, 2021. https://ec.europa.eu/clima/policies /f-gas_en (accessed Septemper 02, 2022) 2021. CR - United Nations, Kyoto protocol to the United Nations framework convention on climate change. New York, USA: 1997. CR - Devotta S, Chelani A, Vonsild A. Prediction of flammability classifications of refrigerants by artificial neural network and random forest model. International Journal of Refrigeration 2021;131:947–55. CR - ASHRAE. Designation and safety classification of refrigerants. 2016. CR - Padilla M, Revellin R, Bonjour J. Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energy Convers Manag 2010;51:2195–201. CR - Çengel Y.A., Boles M.A. Thermodynamics An Engineering Approach. McGraw-Hill; 2013. CR - Kumar KS, Rajagopal K. Computational and experimental investigation of low ODP and low GWP HCFC-123 and HC-290 refrigerant mixture alternate to CFC-12. Energy Convers Manag 2007;48:3053–62. CR - Morrow JA, Huber RA, Nawaz K, Derby MM. Flow condensation heat transfer performance of natural and emerging synthetic refrigerants. International Journal of Refrigeration 2021;132:293–321. CR - Danfoss A/S, Danfoss Ref Tools, 2024. CR - Tillner Roth R, Baehr HD. An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa. J Phys Chem Ref Data 1994;23:657–729. CR - Incropera F.P., Dewitt D.P., Bergman T.L., Lavine AS. Fundamentals of Heat and Mass Transfer. 2007. CR - Çengel Y.A. Heat Transfer a Practical Approach. 2003. CR - Dixon J.C. The Shock Absorber Handbook. 2007. CR - Çengel Y.A., Cimbala J.M. Fluid Mechanics Fundamentals and Applications. 2006. UR - https://doi.org/10.35234/fumbd.1657782 L1 - https://dergipark.org.tr/tr/download/article-file/4690347 ER -