TY - JOUR T1 - Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu TT - Adsorption of Methyl Orange Dye from Aqueous Solutions Using Nitric Acid-Modified Serpentine AU - Altunkaynak, Yalçın AU - Canpolat, Mutlu PY - 2025 DA - October Y2 - 2025 DO - 10.35414/akufemubid.1657989 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe Üniversitesi WT - DergiPark SN - 2149-3367 SP - 1072 EP - 1080 VL - 25 IS - 5 LA - tr AB - Bu çalışmada, nitrik asit (HNO₃) ile modifiye edilmiş serpentin (MS) mineralinin atıksulardan metil oranj (MO) giderimindeki adsorpsiyon performansı değerlendirilmiştir. Adsorpsiyon sürecine etki eden çeşitli parametreler, özellikle temas süresi ve başlangıç MO konsantrasyonu, incelenerek adsorpsiyon verimliliği üzerindeki etkileri araştırılmıştır. Yapılan deneyler sonucunda, MO giderimi için optimum koşullar başlangıç MO konsantrasyonu 300 mg/L ve temas süresi 60 dakika olarak belirlenmiştir. MS’nin adsorpsiyon öncesi ve sonrası yüzey morfolojisi ile kimyasal bileşimindeki değişiklikler, taramalı elektron mikroskobu (SEM), enerji dağılım spektroskopisi (EDS) ve Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) teknikleri kullanılarak analiz edilmiştir. Elde edilen bulgular, MO adsorpsiyonunun Langmuir izoterm modeli ile uyumlu olduğunu ve adsorpsiyon sürecinde hem kimyasal sorpsiyon hem de tersinmezlik etkilerinin önemli bir rol oynadığını ortaya koymuştur. MO için maksimum adsorpsiyon kapasitesi 25, 35 ve 45 °C sıcaklıklarında sırasıyla 36.90, 39.22 ve 40.98 mg/g olarak hesaplanmıştır. Ayrıca, adsorpsiyon kinetiği analizleri, MO gideriminin yalancı ikinci dereceden (PSO) kinetik modeli ile iyi bir uyum gösterdiğini ortaya koymuştur. Elde edilen sonuçlar, MS'nin yüksek adsorpsiyon kapasitesi, kolay temin edilebilirliği ve maliyet etkinliği sayesinde sulu ortamlardan MO boyar maddesinin uzaklaştırılmasında etkili ve uygulanabilir bir adsorban olduğunu göstermektedir. KW - Serpentin KW - Adsorpsiyon KW - Metil Oranj KW - İzoterm KW - Kinetik. N2 - In this study, the adsorption performance of nitric acid (HNO₃)-modified serpentine (MS) mineral in the removal of methyl oranıj (MO) from wastewater was evaluated. Various parameters affecting the adsorption process, especially contact time and initial MO concentration, were investigated and their effects on adsorption efficiency were investigated. As a result of the experiments, the optimum conditions for MO removal were determined as initial MO concentration of 300 mg/L and contact time of 60 minutes. Changes in the surface morphology and chemical composition of MS before and after adsorption were analysed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The results obtained revealed that MO adsorption was in accordance with the Langmuir isotherm model and both chemical sorption and irreversibility effects played an important role in the adsorption process. The maximum adsorption capacity for MO was calculated as 36.90, 39.22 and 40.98 mg/g at 25, 35 and 45 °C, respectively. Furthermore, adsorption kinetics analyses revealed that the MO removal was in good agreement with the pseudo-second order (PSO) kinetic model. The results obtained show that MS is an effective and applicable adsorbent for the removal of MO dyestuff from aqueous media due to its high adsorption capacity, easy availability and cost effectiveness. CR - Altunkayna, Y., & Canpolat, M., 2022. Ham Portakal Kabuğu ile ulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 45-56. https://doi.org/10.35414/akufemubid.1032148 CR - Altunkaynak, Y., Canpolat, M., & Aslan, M., 2023. Adsorption of lead (II) ions on kaolinite from aqueous solutions: isothermal, kinetic, and thermodynamic studies. Ionics, 29(10), 4311-4323. https://doi.org/10.1007/s11581-023-05157-x CR - Awomeso, J. A., Taiwo, A. M., Gbadebo, A. M., & Adenowo, J. A., 2010. Studies on the pollution of water body by textile industry effluents in Lagos, Nigeria. Journal of applied sciences in environmental sanitation, 5(4), 353-359. CR - Canpolat, M., 2023. Removing Co (II) and Mn (II) ions effectively from aqueous solutions by means of chemically non‐processed Mardin stone waste: Equivalent, kinetic, and thermodynamic investigations. Environmental Progress & Sustainable Energy, 42(3), e14042. https://doi.org/10.1002/ep.14042 CR - Canpolat, M., & Altunkaynak, Y., 2024. Use of low-cost processed orange peel for effective removal of cobalt (II) and manganese (II) from aqueous solutions. Ionics, 30(1), 591-605. https://doi.org/10.1007/s11581-023-05291-6 CR - Ekinci, S., 2023. Elimination of Methylene Blue from Aqueous Medium Using an Agricultural Waste Product of Crude Corn Silk (Stylus maydis) and Corn Silk Treated with Sulphuric Acid. ChemistrySelect, 8(18), e202300284. https://doi.org/10.1002/slct.202300284 CR - Farmer, V. C., 2000. Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. spectrochimica acta part A: molecular and biomolecular spectroscopy, 56(5), 927-930. https://doi.org/10.1016/S1386-1425(99)00182-1 CR - Gomez, V., Larrechi, M. S., & Callao, M. P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69(7), 1151-1158. https://doi.org/10.1016/j.chemosphere.2007.03.076 CR - Hosny, N. M., Rady, S., & Dossoki, F. I. E., 2022. Adsorption of methylene blue onto synthesized Co 3 O 4, NiO, CuO and ZnO nanoparticles. Journal of the Iranian Chemical Society, 19, 1877-1887. https://doi.org/10.1007/s13738-021-02424-4 CR - Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A., 2021. Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179. https://doi.org/10.1016/j.crgsc.2021.100179 CR - Kılınç, İ., Budakçı, M., & Korkmaz, M., 2022. Ahşap Yüzeylerde Boya/Vernikleri Temizlemek İçin Kullanılan Çevreci Yöntem ve Medyalar. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4), 2079-2092. https://doi.org/10.29130/dubited.1038859 CR - Kılınç, İ., Budakçı, M., & Korkmaz, M., 2023. The Use of Environmentally Friendly Abrasive Blasting Media for Paint Removal from Wood Surfaces. BioResources, 18(1). https://doi.org/10.15376/biores.18.1.1185-1205 CR - Kumar, K. V., & Sivanesan, S., 2006. Isotherm parameters for basic dyes onto activated carbon: Comparison of linear and non-linear method. Journal of hazardous materials, 129(1-3), 147-150. https://doi.org/10.1016/j.jhazmat.2005.08.022Get rights and content CR - Kundu, S., Chowdhury, I. H., & Naskar, M. K., 2017. Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye. Journal of Molecular Liquids, 234, 417-423. https://doi.org/10.1016/j.molliq.2017.03.090 CR - Madejová, J. J. V. S., 2003. FTIR techniques in clay mineral studies. Vibrational spectroscopy, 31(1), 1-10. https://doi.org/10.1016/S0924-2031(02)00065-6 CR - Mo, J. H., Lee, Y. H., Kim, J., Jeong, J. Y., & Jegal, J., 2008. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes and Pigments, 76(2), 429-434. https://doi.org/10.1016/j.dyepig.2006.09.007 CR - Ogemdi, I. K., & Gold, E. E., 2018. Physico-chemical parameters of industrial effluents from a brewery industry in Imo state, Nigeria. Advanced Journal of Chemistry1 (2 Section A), 1(2), 66-78. CR - Pandey, S., & Ramontja, J., 2016. Natural bentonite clay and its composites for dye removal: current state and future potential. American Journal of Chemistry and Applications, 3(2), 8-19. CR - Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., & Siengchin, S., 2021. Efficient removal of methyl orange from aqueous solution using mesoporous ZSM-5 zeolite: Synthesis, kinetics and isotherm studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125852. https://doi.org/10.1016/j.colsurfa.2020.125852 CR - Sayğılı, H., Güzel, F., & Önal, Y., 2015. Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84-93. https://doi.org/10.1016/j.jclepro.2015.01.009 CR - Tural, B., Ertaş, E., & Tural, S., 2016. Removal of phenolic pollutants from aqueous solutions by a simple magnetic separation. Desalination and water treatment, 57(54), 26153-26164. https://doi.org/10.1080/19443994.2016.1162202 CR - Tural, B., Ertaş, E., Enez, B., Fincan, S. A., & Tural, S., 2017. Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering, 5(5), 4795-4802. https://doi.org/10.1016/j.jece.2017.09.019 CR - Xing, X., Chang, P. H., Lv, G., Jiang, W. T., Jean, J. S., Liao, L., & Li, Z., 2016. Ionic-liquid-crafted zeolite for the removal of anionic dye methyl orange. Journal of the Taiwan Institute of Chemical Engineers, 59, 237-243. https://doi.org/10.1016/j.jtice.2015.07.026 CR - Xiao, Y., & Hill, J. M., 2017. Impact of pore size on fenton oxidation of methyl orange adsorbed on magnetic carbon materials: trade-off between capacity and regenerability. Environmental science & technology, 51(8), 4567-4575. CR - Yu, J., Zhang, X., Wang, D., & Li, P., 2018. Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science and Technology, 77(5), 1303-1312. https://doi.org/10.2166/wst.2018.003 CR - Zayed, A. M., Wahed, M. S. A., Mohamed, E. A., & Sillanpää, M., 2018. Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Applied Clay Science, 166, 49-60. https://doi.org/10.1016/j.clay.2018.09.013 UR - https://doi.org/10.35414/akufemubid.1657989 L1 - https://dergipark.org.tr/tr/download/article-file/4691226 ER -