TY - JOUR T1 - Predicting Stock Prices in The Turkish Banking Sector with Artificial Neural Networks: A Comparison of Multi-Layered LSTM Models TT - Yapay Sinir Ağları ile Türk Bankacılık Sektörü Hisse Senedi Fiyatlarının Tahmini: Çok Katmanlı LSTM Modellerinin Karşılaştırılması AU - Yılmaz, Salih Rıdvan AU - Uçkun, Nurullah PY - 2025 DA - August Y2 - 2025 DO - 10.38009/ekimad.1660370 JF - Ekonomi İşletme ve Maliye Araştırmaları Dergisi JO - EKİMAD PB - İrfan ERSİN WT - DergiPark SN - 2667-503X SP - 169 EP - 182 VL - 7 IS - 2 LA - en AB - In this study, the stock prices of the leading banks in the Turkish banking sector (Akbank, Garanti Bankası, İş Bankası, and Yapı Kredi Bankası) were predicted using different numbers of LSTM layers (from 1 to 5) to examine the effect of layer depth on model performance, ultimately determining the optimal LSTM architecture. Following time series decomposition of the banks’ stock prices, LSTM-based models predicted these prices using 1- to 5-layer architectures, and an experimental analysis was conducted aiming to reveal the optimal layer depth by comparing performance with RMSE, MAE, MAPE, and R² metrics. In LSTM models with different layer depths, moderately deep architectures provided the best prediction performance, while overly deep structures exhibited performance declines due to increased model complexity. Evaluating the effect of the number of LSTM layers on the stock price movements of the leading banks in the BIST30, this study demonstrates that a deep learning configuration appropriate to the complexity of financial data reveals the risk and return dynamics specific to the banking sector. By emphasizing the optimality of different layer depths in time series forecasting through an innovative method, it makes significant contributions to the literature. KW - Deep Learning KW - LSTM KW - Banking Sector KW - Stock Price Prediction N2 - Bu çalışmada, Türk bankacılık sektörünün önde gelen bankalarının (Akbank, Garanti Bankası, İş Bankası ve Yapı Kredi Bankası) hisse senedi fiyatları, farklı sayılarda (1’den 5’e) LSTM katmanıyla tahmin edilerek katman derinliğinin model performansına etkisi incelenmiş ve optimal LSTM mimarisi belirlenmiştir. LSTM tabanlı modeller, bankaların hisse senedi fiyatlarını zaman serisi ayrıştırması sonrası 1 ila 5 katmanlı mimarilerle tahmin etmiş, ardından RMSE, MAE, MAPE ve R² metrikleriyle performans karşılaştırması yaparak optimal katman derinliğini ortaya koymayı amaçlayan deneysel bir analiz uygulanmıştır. Farklı katman derinliklerine sahip LSTM modellerinde orta düzeydeki derin mimariler, en iyi tahmin performansını sunarken, aşırı derin yapılarda model karmaşıklığının artması nedeniyle performans düşüşleri gözlenmiştir. BIST30’un önde gelen bankalarının hisse fiyat hareketleri üzerinde LSTM katman sayısının etkisini değerlendiren bu çalışma; finansal verilerin karmaşıklığına uygun derin öğrenme yapılandırmasının bankacılık sektörüne özgü risk ve getiri dinamiklerini ortaya çıkardığını, yenilikçi bir yöntemle zaman serisi tahmininde farklı katman derinliklerinin optimalliğini vurgulayarak literatüre önemli katkılar sağladığını göstermektedir. CR - Behura, J. P., Pande, S. D., & Ramesh, J. V. N. (2023). “Stock Price Prediction using Multi-Layered Sequential LSTM”, EAI Endorsed Transactions on Scalable Information Systems, 11(4), 1-8. https://doi.org/10.4108/eetsis.4585 CR - Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri, R. K. (2022). “Predicting stock market index using LSTM”, Machine Learning with Applications, 9, 100320. https://doi.org/10.1016/j.mlwa.2022.100320 CR - Boukhers, Z., Bouabdellah, A., Yang, C., & Jürjens, J. (2022). “Beyond trading data: The hidden influence of public awareness and interest on cryptocurrency volatility”. The 32nd ACM International Conference on Information and Knowledge Management, October 21 - 25, 2023, United Kingdom. https://doi.org/10.1145/3583780.3614790 CR - Cheng, L. (2024). “Comparative Analysis of S&P 500 and Nasdaq: A Machine Learning Approach to Understanding Differential Market Sensitivity And Growth Stocks”, 2024 International Conference on Development of Digital Economy (ICDDE 2024), 15 – 17 March 2024, China. https://doi.org/10.1051/shsconf/202418801003 CR - Diqi, M., Ordiyasa, I., & Hamzah, H. (2024). “Enhancing Stock Price Prediction Using Stacked Long Short-Term Memory”, It Journal Research and Development, 8(2), 164-174. https://doi.org/10.25299/itjrd.2023.13486 CR - Figueiredo, R. and Mendes, H. (2024). “Analyzing Information Leakage on Video Object Detection Datasets by Splitting Images Into Clusters With High Spatiotemporal Correlation”, IEEE Access, 12, 47646-47655. https://doi.org/10.1109/access.2024.3383047 CR - Fischer, T. & Krauss, C. (2018). “Deep learning with long short-term memory networks for financial market predictions”, European Journal of Operational Research, 270(2), 654–669. https://doi.org/10.1016/j.ejor.2017.11.054 CR - Hillier, D., Guertler, L., Cheng, B., & Tan, C. (2024). “STLM Engineering Report: Dropout”, https://doi.org/10.48550/arxiv.2409.05423 CR - Htay, H. S., Ghahremani, M., & Shiaeles, S. (2025). “Enhancing Bitcoin Price Prediction with Deep Learning: Integrating Social Media Sentiment and Historical Data”, Applied Sciences, 15(3), 1554. https://doi.org/10.3390/app15031554 CR - I. Yenidoğan, A. Çayir, O. Kozan, T. Dağ and Ç. Arslan, "Bitcoin Forecasting Using ARIMA and PROPHET," 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018, pp. 621-624, doi: https://doi.org/10.1109/UBMK.2018.8566476 CR - Ismanto, E. and Effendi, N. (2024). “An LSTM-Based Prediction Model For Gradient-Descending Optimization In Virtual Learning Environments”, Computer Science and Information Technologies, 4(3), 199-207. https://doi.org/10.11591/csit.v4i3.pp199-207 CR - Jepkoech, J., Mugo, D. M., Kenduiywo, B. K., & Too, E. C. (2021). “The Effect Of Adaptive Learning Rate On The Accuracy of Neural Networks”, International Journal of Advanced Computer Science and Applications, 12(8). https://doi.org/10.14569/ijacsa.2021.0120885 CR - Kiliçarslan, S., Adem, K., & Çelik, M. (2021). “An Overview Of The Activation Functions Used In Deep Learning Algorithms”, Journal of New Results in Science. 10(3), 75-88. https://doi.org/10.54187/jnrs.1011739 CR - Konur, M., Göçken, M., & Dosdoğru, A. T. (2024). “Stock Price Prediction Using Deep Learning Algorithms Based on Technical Indicators”, Journal of Operations Intelligence, 2(1), 300-320. https://doi.org/10.31181/jopi21202427 CR - Liu, Y. (2025, February). “Advancing Stock Return Prediction: A Comprehensive Study of Traditional Machine Learning and Deep Learning Models”, In International Workshop on Navigating the Digital Business Frontier for Sustainable Financial Innovation (ICDEBA 2024) (pp. 869-876). Atlantis Press. https://doi.org/10.2991/978-94-6463-652-9_93 CR - Mahboob, K., Shahbaz, M. H., Ali, F., & Qamar, R. (2023). “Predicting the karachi stock price index with an enhanced multi-layered sequential stacked long-short-term memory model”, VFAST Transactions on Software Engineering, 11(2), 249-255. https://doi.org/10.21015/vtse.v11i2.1571 CR - Md, A. Q., Kapoor, S., Junni, A. V., Sivaraman, A. K., Tee, K. F., Sabireen, H., & Janakiraman, N. (2023). “Novel Optimization Approach For Stock Price Forecasting Using Multi-Layered Sequential LSTM” Applied Soft Computing, 134, 109830. https://doi.org/10.1016/j.asoc.2022.109830 CR - Mutinda, J. K., & Geletu, A. (2025). “Stock Market Index Prediction Using CEEMDAN‐LSTM‐BPNN‐Decomposition Ensemble Model”, Journal of Applied Mathematics, 2025(1), 7706431. https://doi.org/10.1155/jama/7706431 CR - Okut, H. (2021). “Deep Learning For Subtyping And Prediction of Diseases: Long-Short Term Memory”, Deep Learning Applications. https://doi.org/10.5772/intechopen.96180 CR - Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). “Deep learning for financial applications: A survey”, Applied Soft Computing Journal, 93, 106384. https://doi.org/10.1016/j.asoc.2020.106384 CR - P. Gambhir, A. Dev and P. Bansal, "Investigating Activation Functions to Enhance Speaker Identification with LSTM Networks," 2023 26th Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA), Delhi, India, 2023, pp. 1-7, doi: https://doi.org/10.1109/O-COCOSDA60357.2023.10482931 CR - Pagano, M. (1993). “Financial markets and growth: An overview”, European Economic Review, 37(1993), 613-622. North-Holland. http://doi.org/10.1016/0014-2921(93)90051-B CR - Prasetyowati, S. A. D., Ismail, M., & Badieah, B. (2022). “Implementation Of Least Mean Square Adaptive Algorithm On Covid-19 Prediction”, JUITA: Jurnal Informatika, 10(1), 139. https://doi.org/10.30595/juita.v10i1.11963 CR - Safa, R. P., & Oetama, R. S. (2024, August). “Hybrid LSTM Model for Predicting Indonesian Telecommunication Companies Stock Price” In 2024 International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD) (pp. 184-189). IEEE. https://doi.org/10.1109/ICoABCD63526.2024.10704303 CR - Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). “Financial Time Series Forecasting With Deep Learning: A Systematic Literature Review: 2005–2019”, Applied Soft Computing, 90, 106181. https://doi.org/10.1016/j.asoc.2020.106181 CR - Şimşek, A. İ. (2024). “Predicting Bitcoin Price: Comparative Analysis of Machine Learning and Deep Learning Models”, Savunma Bilimleri Dergisi, 20(2), 327-342. https://doi.org/10.17134/khosbd.1394501 CR - Sun, Z., Huang, J., Xiao, C., & Yang, C. (2024). “HaTT: Hadamard avoiding TT recompression”, arXiv preprint arXiv:2410.04385. https://doi.org/10.48550/arXiv.2410.04385 CR - Sunny, M. A. I., Maswood, M. M. S., & Alharbi, A. G. (2020). “Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Mode”, In 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), 87-92. https://doi.org/10.1109/NILES50944.2020.9257950 CR - Tampu, I., Eklund, A., & Haj‐Hosseini, N. (2022). “Inflation Of Test Accuracy Due To Data Leakage In Deep Learning-Based Classification Of Oct Images”, Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01618-6 CR - Utomo, J., Wijaya, A. P., Adinata, K. N., Huang, K. N., Margaretha, H., & Ferdinand, F. V. (2024). “Analysis of Closing Stock Price Predictions Energy Sector in Indonesia Using Convolutional Neural Network”, In 2024 2nd International Conference on Technology Innovation and Its Applications (ICTIIA) (pp. 1-6). IEEE. https://doi.org/10.1109/ICTIIA61827.2024.10761267 CR - Wang, P., Zheng, X., Ai, G., Liu, D., & Zhu, B. (2020). “Time Series Prediction For The Epidemic Trends of COVID-19 Using The Improved LSTM Deep Learning Method: Case Studies In Russia, Peru and Iran”, Chaos, Solitons & Fractals, 140, 110214. https://doi.org/10.1016/j.chaos.2020.110214 CR - Xu, X., & Yoneda, M. (2019). “Multitask Air-Quality Prediction Based on LSTM-Autoencoder Model”, IEEE Transactions On Cybernetics, 51(5), 2577-2586. https://doi.org/10.1109/TCYB.2019.2945999 CR - Yuan, Q., He, M., Chen, Z., Liu, M., & Chen, X. (2025). “A Real-Time Prediction Method for Rate of Penetration Sequence in Offshore Deep Wells Drilling Based on Attention Mechanism-Enhanced BILSTM Model”, Ocean Engineering, 325, 120820. https://doi.org/10.1016/j.oceaneng.2025.120820 CR - Yurtsever, M. (2021). “Gold price forecasting using LSTM, Bi-LSTM and GRU”, Avrupa Bilim ve Teknoloji Dergisi, (31), 341-347. https://doi.org/10.31590/ejosat.959405 CR - Zaheer, S., Anjum, N., Hussain, S., Algarni, A. D., Iqbal, J., Bourouis, S., & Ullah, S. S. (2023). “A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model”, Mathematics, 11(3), 590. https://doi.org/10.3390/math11030590 CR - Zhang, F., Wu, S., Liu, J., Wang, C., Guo, Z., Xu, A.,& Pan, X. (2021). “Predicting Soil Moisture Content Over Partially Vegetation Covered Surfaces From Hyperspectral Data with Deep Learning”, Soil Science Society of America Journal, 85(4), 989-1001. https://doi.org/10.1002/saj2.20193 CR - Zhou, C. (2023). “Long Short-Term Memory Applied on Amazon's Stock Prediction”, Highlights in Science, Engineering and Technology, 34, 71-76. https://doi.org/10.54097/hset.v34i.5380 https://www.borsaistanbul.com/tr/endeks-detay/66/bist-30-agirlik-sinirlamali-10 (Erişim Tarihi: 12.02.2025) UR - https://doi.org/10.38009/ekimad.1660370 L1 - https://dergipark.org.tr/tr/download/article-file/4701859 ER -