TY - JOUR T1 - High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride AU - Gözeten, İbrahim PY - 2025 DA - November Y2 - 2025 DO - 10.21597/jist.1662167 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Iğdır Üniversitesi WT - DergiPark SN - 2536-4618 SP - 1480 EP - 1494 VL - 15 IS - 4 LA - en AB - A large portion of the world's energy consumption is provided by fossil fuel sources. However, these fossil fuel resources are heading towards depletion and causing serious health problems to the environment. Accessing renewable environmentally friendly energy sources is of great importance. Recent studies highlight hydrogen energy as a very serious alternative energy source. We report the production of a new and highly active nanoparticle system consisting of palladium nanoparticles (Pd(0)NPs) impregnated on volcanic ash (VASH) for the hydrolytic dehydrogenation reaction of sodium borohydride (NaBH4). Pd(0)NPs on VASH can be reproducibly prepared by the conventional impregnation-reduction method. The catalytic performance of new Pd(0)@VASH NPs in the hydrolytic dehydrogenetin of NaBH4 was investigated. Characterization of Pd(0)@VASH nanoclusters was carried out using advanced techniques (ICP-OES, FTIR, SEM, SEM-EDX- Elemental mapping, N2 adsorption-desorption, XRD, XPS). Based on the data of the rich kinetic study, the activation parameters (Ea, ΔH≠ and ΔS≠) of the hydrolytic dehydrogenation reaction of sodium borohydride using the Pd(0)@VASH nanocatalyst were determined. The nature of the rate equation of the hydrolytic dehydrogenation reaction of sodium borohydride was elucidated. KW - Sodium borohydride KW - hydrogen energy KW - hydrolysis KW - kinetic KW - palladium nanocatalyst CR - Alraddadi, S., & Assaedi, H. (2020). Characterization and potential applications of different powder volcanic ash. Journal of King Saud University - Science, 32(7), 2969–2975. doi: 10.1016/J.JKSUS.2020.07.019 CR - Avşar, E., Ulusay, R., & Mutlutürk, M. (2015). An experimental investigation of the mechanical behavior and microstructural features of a volcanic soil (Isparta, Turkey) and stability of cut slopes in this soil. Engineering Geology, 189, 68–83. doi: 10.1016/J.ENGGEO.2015.01.027 CR - Bu, Y., Liu, J., Chu, H., Wei, S., Yin, Q., Kang, L., Luo, X., Sun, L., Xu, F., Huang, P., Rosei, F., Pimerzin, A. A., Seifert, H. J., Du, Y., & Wang, J. (2021). Catalytic hydrogen evolution of nabh4 hydrolysis by cobalt nanoparticles supported on bagasse-derived porous carbon. Nanomaterials, 11(12). doi: 10.3390/NANO11123259/S1 CR - Campbell, C. T. (2013). The energetics of supported metal nanoparticles: Relationships to sintering rates and catalytic activity. Accounts of Chemical Research, 46(8), 1712–1719. doi: 10.1021/AR3003514/ASSET/IMAGES/MEDIUM/AR-2012-003514_0008.GIF CR - Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K., & Kumar, S. (2016). Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. Journal of Materials Science, 51(22), 10301–10317. doi: 10.1007/S10853-016-0257-1/METRICS CR - Ennaert, T., Van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., & Sels, B. F. (2016). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 45(3), 584–611. doi: 10.1039/C5CS00859J CR - Fine, G., & Stolper, E. (1986). Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth and Planetary Science Letters, 76(3–4), 263–278. doi: 10.1016/0012-821X(86)90078-6 CR - GÖzeten, İ., & Tunç, M. (2022). Palladium nanoparticles supported on multı-walled carbon nanotube (MWCNT) for the catalytic hexavalent chromium reduction. Materials Chemistry and Physics, 278, 125628. doi: 10.1016/J.MATCHEMPHYS.2021.125628 CR - Gözeten, İ., & Tunç, M. (2022a). Palladium Nanoparticles Supported on Activated Carbon (C) for the Catalytic Hexavalent Chromium Reduction. Water, Air, and Soil Pollution, 233(1), 1–14. doi: 10.1007/S11270-021-05479-4/FİG.S/8 CR - Gözeten, İ., & Tunç, M. (2022b). Palladium nanoparticles supported on aluminum oxide (Al2O3) for the catalytic hexavalent chromium reduction. Journal of Nanoparticle Research, 24(1). doi: 10.1007/S11051-021-05389-W CR - Gözeten, İ., Karakaş, K., Karataş, Y., Tunç, M., & Gülcan, M. (2023). The catalytic activity of halloysite-supported Ru nanoparticles in the methanolysis of sodium borohydride for hydrogen production. International Journal of Hydrogen Energy, 48(92), 35838–35849. doi: 10.1016/J.IJHYDENE.2023.05.297 CR - Huang, Z., Wang, Z., Chen, F., Shen, Q., & Zhang, L. (2016). Band structures and optical properties of Al-doped α-Si3N4: theoretical and experimental studies. Ceramics International, 42(2), 3681–3686. doi: 10.1016/J.CERAMINT.2015.11.036 CR - Karaoǧlu, Ö., Helvaci, C., & Ersoy, Y. (2010). Petrogenesis and 40Ar/39Ar geochronology of the volcanic rocks of the Uşak-Güre basin, western Türkiye. Lithos, 119(3–4), 193–210. doi: 10.1016/J.LITHOS.2010.07.001 CR - Kaushik, M., & Moores, A. (2016). Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chemistry, 18(3), 622–637. doi: 10.1039/C5GC02500A CR - Khalily, M. A., Yurderi, M., Haider, A., Bulut, A., Patil, B., Zahmakiran, M., & Uyar, T. (2018). Atomic Layer Deposition of Ruthenium Nanoparticles on Electrospun Carbon Nanofibers: A Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane. ACS Applied Materials & Interfaces, 10(31), 26162–26169. doi: 10.1021/ACSAMI.8B04822 CR - Kürkçüoğlu, M. E., Kahraman, F. Ç., Dizman, S., & Bilgici Cengiz, G. (2024). Evaluation of radioactivity and radiological parameters in soil samples in Isparta, Türkiye. Nuclear Engineering and Technology. doi: 10.1016/J.NET.2024.05.002 CR - Mohammed, L. H., Gulbagca, F., Tiri, R. N. E., Aygun, A., Bekmezci, M., & Sen, F. (2023). Hydrothermal-assisted synthesis of Co-doped ZnO nanoparticles catalyst for sodium borohydride dehydrogenation and photodegradation of organic pollutants in water. Chemical Engineering Journal Advances, 14, 100495. doi: 10.1016/J.CEJA.2023.100495 CR - Pandey, M., Singh, M., Wasnik, K., Gupta, S., Patra, S., Gupta, P. S., Pareek, D., Chaitanya, N. S. N., Maity, S., Reddy, A. B. M., Tilak, R., & Paik, P. (2021). Targeted and Enhanced Antimicrobial Inhibition of Mesoporous ZnO-Ag2O/Ag, ZnO-CuO, and ZnO-SnO2 Composite Nanoparticles. ACS Omega, 6(47), 31615–31631. doi: 10.1021/ACSOMEGA.1C04139 CR - Paterson, R., Alharbi, A. A., Wills, C., Dixon, C., Šiller, L., Chamberlain, T. W., Griffiths, A., Collins, S. M., Wu, K., Simmons, M. D., Bourne, R. A., Lovelock, K. R. J., Seymour, J., Knight, J. G., & Doherty, S. (2022). Heteroatom modified polymer immobilized ionic liquid stabilized ruthenium nanoparticles: Efficient catalysts for the hydrolytic evolution of hydrogen from sodium borohydride. Molecular Catalysis, 528, 112476. doi: 10.1016/J.MCAT.2022.112476 CR - Pérez-Mayoral, E., Calvino-Casilda, V., & Soriano, E. (2016). Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Catalysis Science & Technology, 6(5), 1265–1291. doi: 10.1039/C5CY01437A CR - Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528. doi: 10.1016/J.CONBUILDMAT.2022.127528 CR - Rakap, M. (2015). Hydrolysis of Sodium Borohydride and Ammonia Borane for Hydrogen Generation Using Highly Efficient Poly(N-Vinyl-2-Pyrrolidone)-Stabilized Ru–Pd Nanoparticles as Catalysts. International Journal of Green Energy, 12(12), 1288–1300. doi: 10.1080/15435075.2014.895737 CR - Rakap, M., & Özkar, S. (2009). Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 91(1–2), 21–29. doi: 10.1016/J.APCATB.2009.05.014 CR - Rakap, M., & Özkar, S. (2012). Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane. Catalysis Today, 183(1), 17–25. doi: 10.1016/J.CATTOD.2011.04.022 CR - Rakap, M., & Rakap, M. (2020a). PVP-Protected Pt-Ru Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Sodium Borohydride. General Chemistry, 6(4), 200003. doi: 10.21127/YAOYIGC20200003 CR - Rakap, M., & Rakap, M. (2020b). PVP-Protected Pt-Ru Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Sodium Borohydride. General Chemistry, 6(4), 200003. doi: 10.21127/YAOYIGC20200003 CR - Rakap, M., Kalu, E. E., & Özkar, S. (2011). Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. Journal of Alloys and Compounds, 509(25), 7016–7021. doi: 10.1016/J.JALLCOM.2011.04.023 CR - Rose, W. I., & Durant, A. J. (2009). Fine ash content of explosive eruptions. Journal of Volcanology and Geothermal Research, 186(1–2), 32–39. doi: 10.1016/J.JVOLGEORES.2009.01.010 CR - Tchadjié, L. N., Djobo, J. N. Y., Ranjbar, N., Tchakouté, H. K., Kenne, B. B. D., Elimbi, A., & Njopwouo, D. (2016). Potential of using granite waste as raw material for geopolymer synthesis. Ceramics International, 42(2), 3046–3055. doi: 10.1016/J.CERAMINT.2015.10.091 CR - Tiri, R. N. E., Gulbagca, F., Aygun, A., Cherif, A., & Sen, F. (2022). Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis. Environmental Research, 206, 112622. doi: 10.1016/J.ENVRES.2021.112622 CR - Wang, Y., Li, T., Bai, S., Qi, K., Cao, Z., Zhang, K., Wu, S., & Wang, D. (2016). Catalytic hydrolysis of sodium borohydride via nanostructured cobalt–boron catalysts. International Journal of Hydrogen Energy, 41(1), 276–284. doi: 10.1016/J.IJHYDENE.2015.11.076 CR - Yang, C. C., Chen, M. S., & Chen, Y. W. (2011). Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. International Journal of Hydrogen Energy, 36(2), 1418–1423. doi: 10.1016/J.IJHYDENE.2010.11.006 CR - Zhu, L., Liu, X. Q., Jiang, H. L., & Sun, L. B. (2017). Metal-Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129–8176. doi: 10.1021/ACS.CHEMREV.7B00091/ASSET/IMAGES/MEDIUM/CR-2017-000914_0048.GIF UR - https://doi.org/10.21597/jist.1662167 L1 - https://dergipark.org.tr/tr/download/article-file/4709968 ER -