TY - JOUR T1 - Bioactive Peptides from Milk and Dairy Products: Applications and Activities TT - Süt ve Süt Ürünlerindeki Biyoaktif Peptitler: Uygulamalar ve Aktiviteler AU - Güner, Pınar PY - 2025 DA - May Y2 - 2025 DO - 10.47947/ijnls.1663131 JF - International Journal of Nature and Life Sciences JO - Int J Nature Life Sci PB - Uğur ÇAKILCIOĞLU WT - DergiPark SN - 2602-2478 SP - 24 EP - 37 VL - 9 IS - 1 LA - en AB - Milk and dairy products serve as natural sources of bioactive peptides, which are protein fragments with significant health-promoting properties. These peptides exhibit a range of biological activities, including antimicrobial, antioxidant, antihypertensive, immunomodulatory, and antithrombotic effects. Bioactive peptides are primarily released through enzymatic hydrolysis, microbial fermentation, or gastrointestinal digestion. Among them, antimicrobial peptides (AMPs) have gained particular attention due to their ability to inhibit pathogenic microorganisms by disrupting cell membranes, interfering with bacterial metabolism, or modulating immune responses. Additionally, bioactive peptides contribute to cardiovascular health by inhibiting angiotensin-converting enzyme (ACE) and preventing blood clot formation. Their antioxidant effects protect against oxidative stress, while opioid-like peptides influence neurological functions. This review provides an overview of bioactive peptides derived from milk and dairy products, focusing on their production, mechanisms of action, health benefits, and potential applications in the food and pharmaceutical industries. Further research is needed to optimize their bioavailability, stability, and large-scale production to enhance their functional applications in human health. KW - milk KW - Dairy products KW - Bioactive peptides KW - Functional foods KW - Antimicrobial activity KW - Health benefits N2 - Süt ve süt ürünleri, önemli sağlık geliştirici özelliklere sahip protein parçaları olan biyoaktif peptitlerin doğal kaynaklarıdır. Bu peptitler, antimikrobiyal, antioksidan, antihipertansif, immünomodülatör ve antitrombotik etkiler dahil olmak üzere bir dizi biyolojik aktivite sergiler. Biyoaktif peptitler öncelikle enzimatik hidroliz, mikrobiyal fermantasyon veya gastrointestinal sindirim yoluyla salınır. Bunlar arasında, antimikrobiyal peptitler (AMP'ler), hücre zarlarını bozarak, bakteriyel metabolizmaya müdahale ederek veya bağışıklık tepkilerini düzenleyerek patojenik mikroorganizmaları inhibe etme kabiliyetleri nedeniyle özel ilgi görmüştür. Ek olarak, biyoaktif peptitler anjiyotensin dönüştürücü enzimi (ACE) inhibe ederek ve kan pıhtısı oluşumunu önleyerek kardiyovasküler sağlığa katkıda bulunur. Antioksidan etkileri oksidatif strese karşı koruma sağlarken, opioid benzeri peptitler nörolojik işlevleri etkiler. Bu inceleme, süt ve süt ürünlerinden elde edilen biyoaktif peptitlere genel bir bakış sunarak üretimlerine, etki mekanizmalarına, sağlık yararlarına ve gıda ve ilaç endüstrilerindeki potansiyel uygulamalarına odaklanmaktadır. İnsan sağlığındaki işlevsel uygulamalarını geliştirmek için biyoyararlanımlarını, stabilitelerini ve geniş ölçekli üretimlerini optimize etmek amacıyla daha fazla araştırmaya ihtiyaç vardır. CR - Abuja, P., & Albertini, R. (2001). Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clinica Chimica Acta, 306, 1–17. https://doi.org/10.1016/s0009-8981(01)00393-x CR - Agyei, D., & Danquah, M. K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances, 29 (3), 272-277. https://doi.org/10.1016/j.biotechadv.2010.12.006 CR - Akbal, S., & Öner, Z. (2021). Süt ve süt ürünlerinden elde edilen peptitlerin patojen mikroorganizmalar üzerine antimikrobiyal etkisi. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 7 (2), 305-322. https://doi.org/10.34186/klujes.931840 CR - Almi-Sebbane, D., Adt, I., Degraeve, P., Jardin, J., Bettler, E., Terreux, R., Oulahal, N., & Mati, A. (2018). Casesidin-like anti-bacterial peptides in peptic hydrolysate of camel milk β-casein. International Dairy Journal, 86, 49-56. https://doi.org/10.1016/j.idairyj.2018.06.016 CR - Anusha, R., & Bindhu, O. S. (2016). Production of bioactive peptides from milk proteins. International Journal of Science and Research, 5 (3), 2319-7064. https://doi.org/10.1007/978-3-030-55482-8_18 CR - Banihashemi, S. A., Nikoo, M., Ghasempour, Z., & Ehsani, A. (2020). Bioactive peptides fractions from traditional Iranian Koopeh cheese; lactic fermentation products. Biocatalysis and Agricultural Biotechnology, 29, 101798. https://doi.org/10.1016/j.bcab.2020.101798 CR - Barac, M., Smiljanic, M., Zilic, S., Pesic, M., Stanojevic, S., Vasic, M., & Vucic, T. (2016). Protein profiles and total antioxidant capacity of water soluble and insoluble protein fractions of white cow cheese at different stage of ripening. Mljekarstvo, 66, 187-197. https://doi.org/10.15567/mljekarstvo.2016.0303 CR - Beermann, C., & Hartung, J. (2013). Physiological Properties of Milk Ingredients Released by Fermentation. Food and Function, 4, 185-199. https://doi.org/10.1039/c2fo30153a CR - Bhandari, D., Rafiq, S., Gat, Y., & Gat, P. (2020). Bioactive peptides in milk: A review. International Journal of Food Properties, 23 (1), 1-14. https://doi.org/10.1007/s10989-019-09823-5 CR - Bruck, W. M., Kelleher, S. L., Gibson, G. R., Nielsen, K. E., Chatterton, D. E., & Lonnerdal, B. (2003). rRNA probes used to quantify the effects of glycomacropeptide and α-lactalbumin supplementation on the predominant groups of intestinal bacteria of infant rhesus monkeys challenged with enteropathogenic E.coli. Journal of Pediatric Gastroenterology and Nutrition, 37, 273–280. https://doi.org/10.1097/00005176-200309000-00014 CR - Choi, J., Sabikhi, L., Hassan, A., & Anand, S. (2012). Bioactive peptides in dairy products. International Journal of Dairy Technology, 65 (1), 1-12. https://doi.org/10.1111/J.1471-0307.2011.00725.X CR - Daliri, E. B., Oh, D. H., & Lee, B. H. (2017). Bioactive peptides. Foods, 6 (5), 32. https://doi.org/10.3390/foods6050032 CR - de Lima, M. D. S. F., da Silva, R. A., da Silva, M. F., da Silva, P. A. B., Costa, R. M. P. B., Teixeira, J. A. C., Porto A. L. F., & Cavalcanti, M. T. H. (2018). Brazilian kefir-fermented sheep’s milk, a source of antimicrobial and antioxidant peptides. Probiotics and Antimicrobial Proteins, 10 (3), 446-455. https://doi.org/10.1007/s12602-017-9365-8 CR - Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G., & Jean, J. (2013). Inhibition of Listeria monocytogenes growth in Cheddar cheese by an anionic peptides-enriched extract from whey proteins. International Dairy Journal, 32 (1), 6-12. https://doi.org/10.1016/j.idairyj.2013.03.008 CR - Esmaeilpour, M., Ehsani, M. R., Aminlari, M., Shekarforoush, S., & Hoseini, E. (2016). Antimicrobial activity of peptides derived from enzymatic hydrolysis of goat milk caseins, Comparative Clinical Pathology, 25 (3), 599-605. https://doi.org/10.1007/s00580-016-2237-x CR - Farnaud, S., & Evans, R. W. (2003). Lactoferrin—a multifunctional protein with antimicrobial properties. Molecular Immunology, 40 (7), 395-405. https://doi.org/10.1016/s0161-5890(03)00152-4 CR - Fialho, T. L., Carrijo, L. C., Júnior, M. J. M., Baracat-Pereira, M. C., Piccoli, R. H., & de Abreu, L. R. (2018). Extraction and identification of antimicrobial peptides from the Canastra artisanal minas cheese. Food Research International, 107, 406-413. https://doi.org/10.1016/j.foodres.2018.02.009 CR - Fiat, A. M., Miglilore-Samour, D., Jolles, P., Crouet, L., Collier, C., & Caen, J. (1993). Biologicallyactive peptides from milk proteins with emphasis on two example concerning antithrombotic and immuno modulating activities. Journal Dairy Science, 76, 301-310. https://doi.org/10.3168/jds.s0022-0302(93)77351-8 CR - FitzGerald, R. J., & Meisel, H. (2003). Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. British Journal of Nutrition, 84 (1), 33-37. https://doi.org/10.1017/s0007114500002221 CR - Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor, and immunological properties. Cellular and Molecular Life Sciences, 62 (22), 2588–2598. https://doi.org/10.1007/s00018-005-5373-z CR - Gobbetti, M., Minervini, F., & Rizzello, C. G. (2004). Bioactive peptides in dairy products. In Bioactive components of milk. Springer. CR - Guha, S., Sharma, H., & Deshwal, G. K. (2021). A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Production, Processing and Nutrition, 3, 2. https://doi.org/10.1186/s43014-020-00045-7 CR - Halavach, T. M., Dudchik, N. V., Tarun, E. I., Zhygankov, V. G., Kurchenko, V. P., Romanovich, R. V., Khartitonov, V. D., & Asafov, V. A. (2020). Biologically active properties of hydrolysed and fermented milk proteins, Journal of Microbiology. Biotechnology and Food Sciences, 9 (4), 714-720. http://dx.doi.org/10.15414/jmbfs.2020.9.4.714-720 CR - Hancock, R. E., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24 (12), 1551. https://doi.org/10.1038/nbt1267 CR - Haque, M., Rahman, S., & Singh, D. (2022). Disrupting bacterial function: Antimicrobial peptides as potential therapeutics. Journal of Applied Microbiology, 132 (3), 1127-1142. CR - Hayes, M., Ross, R. P., & Stanton, C. (2021). Milk-derived peptides with bioactive properties: Implications for human health. Nutrients, 13 (5), 1431. https://doi.org/10.1016/j.sjbs.2015.06.005 CR - Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C., & Stanton, C. (2006). Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology 72 (3), 2260-2264. https://doi.org/10.1128/AEM.72.3.2260-2264.2006 CR - Hernandez-Ledesma, B., Recio, I., & Amigo, L. (2011). Bioactive peptides derived from milk proteins: A review. Food and Function, 2(7), 445-456. https://doi.org/10.1039/C1FO10134F CR - Hidalgo, M. E., Côrrea, A. P. F., Canales, M. M., Daroit, D. J., Brandelli, A., & Risso, P. (2015). Biological and physicochemical properties of bovine sodium caseinate hydrolysates obtained by a bacterial protease preparation. Food Hydrocolloids, 43, 510-520. http://dx.doi.org/10.1016/j.foodhyd.2014.07.009 CR - Horne, D. S. (2017). Characteristics of milk. In Fennema's Food Chemistry. CRC Press. CR - Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 582779. https://doi.org/10.3389/fmicb.2020.582779 CR - Ider, S., Belguesmia, Y., Cazals, G., Boukherroub, R., Coucheney, F., Kihal, M., Enjalbal, C., & Drider, D. (2020). The antimicrobial peptide oranicin P16 isolated from Trichospron asahii ICVY021, found in camel milk's, inhibits Kocuria rhizophila. Food Bioscience, 36, 100670. https://doi.org/10.1016/j.fbio.2020.100670 CR - Jrad, Z., El Hatmi, H., Adt, I., Girardet, J. M., Cakir-Kiefer, C., Jardin, J., Degreave, P., Khorchani, T., & Oulahal, N. (2014). Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-c onverting enzyme inhibitory activities of camel colostrum and milk proteins. Dairy Science and Technology, 94 (3), 205-224. CR - Knyazeva, E. L., Grishchenko, V. M., Fadeev ,R. S., Akatov, V. S., Permyakov, S. E., & Permyakov, E. A., (2008). Who is Mr. Hamlet Interaction of Human α-lactalbumin with Monomeric Oleic Acid. Biochemistry, 47, 13127–13137. https://doi.org/10.1021/bi801423s CR - Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16 (9), 945-960. https://doi.org/10.1016/j.idairyj.2005.10.012 CR - Kumar, D., Chatli, M. K., Singh, R., Mehta, N., & Kumar, P. (2016). Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Ruminant Research, 139, 20-25. https://doi.org/10.1016/j.smallrumres.2016.05.002 CR - Lahov, E., & Regelson, W. (1996). Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food and Chemical Toxicology, 34 (1), 131-145. https://doi.org/10.1016/0278-6915(95)00097-6 CR - Li, L., Wang, L., Gao, Y., Wang, J., & Zhao, X. (2017). Effective antimicrobial activity of plectasin-derived antimicrobial peptides against Staphylococcus aureus infection in mammary glands. Frontiers in Microbiology, 8, 2386. https://doi.org/10.3389/fmicb.2017.02386 CR - Lopez-Exposito, I., Quirós, A., Amigo, L., & Recio I. (2007). Casein hydrolysates as a source of antimicrobial, antioxidant and antihypertensive peptides. Le Lait, 87, 241–249. https://doi.org/10.1051/lait:2007019 CR - Lopez-Garcia, G., Dublan-García, O., Arizmendi-Cotero, D., & Gómez Oliván, L. M. (2022). Antioxidant and antimicrobial peptides derived from food proteins. Molecules, 27 (4), 1343. https://doi.org/10.3390/molecules27041343 CR - Malmsten, M. (2016). Interactions of antimicrobial peptides with bacterial membranes and membrane components. Current Topics in Medicinal Chemistry, 16 (1), 16-24. https://doi.org/10.2174/1568026615666150703121518 CR - McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginski, H., & Coventry, M. J. (2016). Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein. International Dairy Journal, 61, 147-154. https://doi.org/10.1016/j.idairyj.2005.05.005 CR - Miao, J., Liu, G., Ke, C., Fan, W., Li, C., Chen, Y., Dixon, W., Song, M., Cao, Y., & Xiao, H. (2016). Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli. Food Control, 65, 63-72. https://doi.org/10.1016/j.foodcont.2016.01.023 CR - Migliore-Samour D, & Jolle`s, P., (1998). Casein prohormone with an immunomodulating role for the newborn. Experientia, 44, 188-193. https://doi.org/10.1007/BF01941703 CR - Mils, S., Ross, R. P., Hill, C., Fitzgerald, G. F., & Stanton, C. (2011). Milk intelligence: Mining milk for bioactive substances associated with human health. International Dairy Journal, 21, 377–401. https://doi.org/10.1016/j.idairyj.2010.12.011 CR - Mohanty, D., Jena, R., Choudhury, P. K., Pattnaik, R., Mohapatra, S., & Saini, M. R. (2016). Milk derived antimicrobial bioactive peptides: a review. International Journal of Food Properties, 19, 837–846. https://doi.org/10.1080/10942 912. 2015.10483 56 CR - Moller, N. P., Scholz-Ahrens, K. E., Roos, N., & Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: Indication for health effects. British Journal of Nutrition, 100(S1), S5-S27. https://doi.org/10.1017/S0007114508006806 CR - Mora, L., Gallego, M., & Toldrá, F. (2021). New peptides derived from milk proteins with antibacterial and antioxidant properties. Current Opinion in Food Science, 37, 101-107. https://doi.org/10.1016/j.cofs.2020.11.004 CR - Muhialdin, B. J., & Algboory, H. L. (2018). Identification of low molecular weight antimicrobial peptides from Iraqi camel milk fermented with Lactobacillus plantarum. Pharma Nutrition 6 (2), 69-73. https://doi.org/10.1016/j.phanu.2018.02.002 CR - Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A. A., Khan, M. K. I., Suleria, H. A. R. (2019). Lactoferrin (LF): a natural antimicrobial protein. International Journal of Food Properties, 22, 1626–1641. https://doi.org/10.1080/10942912.2019.1666137 CR - Nibbering, P. H., Ravensbergen, E., Welling, M. M., Van Berkel, L. A., van Berkel, P. H. C., Pauwels, E. K. J., & Nuijens, J. H. (2001). Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infection and Immunity, 69, 1469–1476. https://doi. org/10.1128/IAI.69.3.1469-1476.2001 CR - Nongonierma, A. B., & FitzGerald, R. J. (2015). Bioactive properties of milk proteins in humans: A review. Peptides, 73, 20-34. https://doi.org/10.1016/j.peptides.2015.08.009 CR - Osman, A., Goda, H. A., Abdel-Hamid, M., Badran, S. M., & Otte, J. (2016). Antibacterial peptides generated by Alcalase hydrolysis of goat whey. Food Science and Technology, 65, 480-486. http://dx.doi.org/10.1016/j.lwt.2015.08.043 CR - Park, S. C., Park, Y., & Hahm, K. S. (2011). The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. International journal of molecular sciences, 12 (9), 5971-5992. https://doi.org/10.3390/ijms12095971 CR - Park, Y. W., & Nam, M. S. (2015). Bioactive peptides in milk and dairy products: A review. Korean Journal for Food Science of Animal Resources, 35, 831–840. https://doi. org/10.5851/kosfa.2015.35.6.831 CR - Pellegrini, A. (2003). Antimicrobial peptides from food proteins. Current Pharmaceutical Design, 9, 1225–1238. https://doi.org/10.2174/1381612033454865 CR - Pritchard, S. R., Phillips, M., & Kailasapathy, K. (2010). Identification of bioactive peptides in commercial Cheddar cheese. Food Research International, 43 (5), 1545-1548. http://dx.doi.org/10.1016/j.foodres.2010.03.007 CR - Rival, S.G., Boeriu, C.G., & Wichers, H. J. (2001). Caseins and casein hydrolysates. 2. antioxidative properties and relevance to lipoxygenase inhibition. Journal Agricultural Food Chemical, 49 (1), 295-302. https://doi.org/10.1021/jf0003911 CR - Rizzello, C. G., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M. D., & Zambonin, P. G. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. Journal of Dairy Science, 88 (7), 2348-2360. http://dx.doi.org/10.3168/jds.S0022-0302(05)72913-1 CR - Salami, M., Moosavi-Movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertle, T., Chobert, J. M., Ravazi, S. H., Henrich, R., Balalaie, S., Ebadi, S. A., Pourtakdoost, S., & Niasari-Naslaji, A. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry, 58 (6), 3297-3302. https://doi.org/10.1021/jf9033283 CR - Sedaghati, M., Ezzatpanah, H., Boojar, M. M. A., Ebrahimi, M. T., & Kobarfard, F. (2016). Isolation and identification of some antibacterial peptides in the plasmin-digest of β-casein. Food Science and Technology, 68, 217-225. http://dx.doi.org/10.1016/j.lwt.2015.12.019 CR - Seppo, L., Jauhianien, T., Poussa, T., Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. The American Journal of Clinical Nutrition, 77 (2), 326-330. https://doi.org/10.1093/ajcn/77.2.326 CR - Smithers, G. W. (2008). Whey and whey proteins—from gutter-to-gold. International Dairy Journal, 18, 695-704. https://doi.org/10.1016/j.idairyj.2008.03.008 CR - Solieri, L., Rutella, G. S., & Tagliazucchi, D. (2015). Impact of non-starter lactobacilli on release of peptides with angiotensin-converting enzyme inhibitory and antioxidant activities during bovine milk fermentation. Food Microbiology, 51, 108-116. https://doi.org/10.1016/j.fm.2015.05.012 CR - Sun, Y., Zhou, Y., Liu, X., Zhang, F., Yan, L., Chen, L., Wang, X., Ruan, H., Ji, C., Cui, X., & Wang, J. (2017). Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk. Biochemical and Biophysical Research Communications, 484 (1), 132-137. https://doi.org/10.1016/j.bbrc.2017.01.059 CR - Teschemacher, H., Koch, G., & Brantl, V., (1997). Milk proteinderived opioid receptor ligands. Biopolymers, 43, 99–117. CR - Theolier, J., Hammami, R., Labelle, P., Fliss, I., & Jean, J. (2013). Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. Journal of Functional Foods, 5(2), 706-714. http://dx.doi.org/10.1016/j.jf f.2013.01.014 CR - Tomita, M., Takase, M., Bellamy, W., & Shimamura, S. (2009). A review: The active peptide of lactoferrin. Acta Paediatrica, 88 (430), 57-63. https://doi.org/10.1111/j.1442-200X.1994.tb03250.x CR - Tomita, M., Wakabayashi, H., Yamauchi, K., Teraguchi, S., & Hayasawa, H. (2002). Bovine lactoferrin and lactoferricin derived from milk: Production and applications. Biochemistry and Cell Biology, 80, 109–112. https://doi.org/10.1139/o01-230 CR - Wang, X., Sun, Y., Wang, F., You, L., Cao, Y., Tang, R., & Cui, X. (2020). A novel endogenous antimicrobial peptide CAMP 211–225 derived from casein in human milk. Food and Function, 11, 2291–2298. https://doi.org/10.1039/c9fo0 2813g CR - Xuan, J., Feng, W., Wang, J., Wang, R., Zhang, B., Bo, L., Chen Z. S., Yang, H., & Sun, L. (2023). Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resistance Updates, 68, 100954. https://doi.org/10.1016/j.drup.2023.100954 CR - Zanutto-Elgui, M. R., Vieira, J. C. S., do Prado, D. Z., Buzalaf, M. A. R., de Magalhães Padilha, P., de Oliveira, D. E., & Fleuri, L. F. (2019). Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry, 278, 823-831. https://doi.org/10.1016/j.foodchem.2018.11.119 CR - Zhang, Q. Y., Yan, Z. B., Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang J., & Fu, C. Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research, 8, 1-25. https://doi.org/10.1186/s40779-021-00343-2 UR - https://doi.org/10.47947/ijnls.1663131 L1 - https://dergipark.org.tr/tr/download/article-file/4714230 ER -