TY - JOUR T1 - Yeni Genomik Teknikler ve CRISPR-Cas9 Teknolojisi AU - Yilmaz, Batuhan Berk AU - Sireli, Ufuk Tansel PY - 2025 DA - September Y2 - 2025 JF - Akademik Et ve Süt Kurumu Dergisi JO - AESKD PB - Et ve Süt Kurumu WT - DergiPark SN - 2757-5470 SP - 29 EP - 38 IS - 10 LA - tr AB - Genom düzenleme teknolojileri alanında CRISPR-Cas9 (Düzenli Aralıklı Palindromik Tekrar Kümeleri) teknolojisi devrim niteliğinde bir yenilik olup, tüm canlı hücrelerin genomları üzerinde düzenleme yapmaya imkan tanıyan bir uygulamadır. Bu çığır açıcı genom düzenleme yöntemi 2020 yılında, bu alandaki keşiflerinden ötürü Fransız mikrobiyolog Emmanuelle Charpentier ve Amerikalı biyokimyager Jennifer Doudna'ya Nobel Kimya Ödülü’nü kazandırdı. CRISPR-Cas9 teknolojisi, tıp, tarım ve biyoteknoloji gibi birçok alanda geniş bir uygulama potansiyeline sahiptir. Tarım uygulamalarında, bitkilerin besin değerlerinin iyileştirilmesini sağlarken, tıp alanında kanser, HIV ve Orak Hücre Anemisi gibi önemli hastalıkların tedavisinde kullanılmaktadır. Bunların yanı sıra CRISPR teknolojisi, gen düzenlemeleri ile gen aktivasyonu veya baskılaması gibi işlevsel değişiklikler yapmak için de uygulanabilmektedir. Ancak teknolojinin klinik alanda kullanılmasını engelleyen bazı zorluklar mevcuttur; immün yanıtlar, hedef dışı etkiler ve etik sorunlar bu zorluklar arasında yer almaktadır. Avrupa Birliği Komisyonu’nun bu alanda henüz net bir yaklaşım geliştirememesi ve teknolojinin pratikteki uygulamaları için daha fazla iyileştirme gerekliliği, bu sorunların başlıcalarıdır. Bu derleme, CRISPR-Cas9 teknolojisinin potansiyelini ve karşılaştığı zorlukları ele alarak, gelecekteki gelişim ve uygulamalarına dair bilgiler sunmaktadır. KW - CRISPR-Cas9 KW - Yeni Genomik Teknikler KW - Gen Düzenleme KW - Genetik Mühendisliği Tekniği KW - Gen Terapisi CR - Acar, B. O., Cengiz, G. ve Göncüoğlu, M. (2023). Vancomycin-Variable Enterococci in Sheep and Cattle Isolates And Whole-Genome Sequencing Analysis of Isolates Harboring vanM and vanB Genes. Irani̇an Journal of Veteri̇nary Research, (24), 182-192. https://doi.org/10.22099/ijvr.2023.47465.6855 CR - Ansorı̇, A. N., Antonı̇us, Y., Susı̇lo, R. J., Hayaza, S., Kharı̇sma, V. D., Saklanı̇, T., Rebezov, M., Ullah, M. E., Maksı̇mı̇uk, N., Derkho, M. ve Burkov, P. (2023). Application of CRISPR-Cas9 genome editing technology in various fields: a review. Narra J, 3(2), e184. https://doi.org/10.52225/narra.v3i2.184 CR - Asmamaw, M. ve Zawdı̇e, B. (2021). Mechanism and applications of CRISPR-Cas9-mediated genome editing. Bi̇ologi̇cs, (15), 353-361. https://doi.org/10.2147/BTT.S326422 CR - Barrangou, R. ve Horvath, P. (2012). CRISPR: New horizons in phage resistance and strain identification. Annual Review of Food Science and Technology, 3, 143-162. https://doi.org/10.1146/annurev-food-022811-101134 CR - Barrangou, R., Coûté-Monvoı̇sı̇n, A., Stahl, B., Chavı̇chvı̇ly, I., Damange, F., Romero, D. A., Boyaval, P., Fremaux, C. ve Horvath, P. (2013). Genomic impact of CRISPR immunization against bacteriophages. Bi̇ochemi̇cal Soci̇ety Transacti̇ons, 41(6), 1383–1391. https://doi.org/10.1042/bst20130160 CR - Barrangou, R., Fremaux, C., Deveau, H., Rı̇chards, M., Boyaval, P., Moı̇neau, S., Romero, D. A. ve Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Sci̇ence, 315(5819), 1709-1712. https://doi.org/10.1126/science.1138140 CR - Cao, J., Xı̇ao, Q. ve Yan, Q. (2018). The multiplexed CRISPR targeting platforms. Drug Discovery Today: Technologies, 28, 53-61. https://doi.org/10.1016/j.ddtec.2018.01.001 CR - Caplan, A. L., Parent, B., Shen, M. ve Plunkett, C. (2015). No time to waste--the ethical challenges created by CRISPR: CRISPR/Cas, being an efficient, simple, and cheap technology to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to manipulate human germ line cells. Embo Reports, 16(11), 1421-1426. https://doi.org/10.15252/embr.201541337 CR - Coller, B. S. (2019). Ethics of human genome editing. Annual Revi̇ew of Medi̇ci̇ne, 70, 289-305. https://doi.org/10.1146/annurev-med-112717-094629 CR - Cong, L., Ran, F. A., Cox, D., Lı̇n, S., Barretto, R., Habı̇b, N., Hsu, P. D., Wu, X., Jı̇ang, W., Marraffı̇nı̇, L. A. ve Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Sci̇ence, 339(6121), 819-823. https://doi.org/10.1126/science.1231143 CR - Domı̇nguez, A. A., Lı̇m, W. A. ve Qı̇, L. S. (2016). Beyond editing: repurposing CRISPR- Cas9 for precision genome regulation and interrogation. Nature Revi̇ews Molecular Cell Bi̇ology, 17, 5-15. https://doi.org/10.1038/nrm.2015.2 CR - Doudna, J. A. ve Charpentier, E. (2014) The New Frontier of Genome Engineering with CRISPR-Cas9. Science, 346(6213). Article ID: 1258096. https://doi.org/10.1126/science.1258096 CR - Eş, İ., Gavahı̇an, M., Martı̇-Quı̇jal, F. J., Lorenzo, J. M., Khaneghah, A. M., Tsatsanı̇s, C., Kampranı̇s, S. C. ve Barba, F. J. (2019). The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges. Bi̇otechnology Advances, 37(3), 410-421. https://doi.org/10.1016/j.biotechadv.2019.02.006 CR - Hsu, P. D., Scott, D. A., Weı̇nsteı̇n, J. A., Ran, F. A., Konermann, S., Agarwala, V., Lı̇, Y., Fı̇ne, E. J., Wu, X., Shalem, O., Cradı̇ck, T. J., Marraffı̇nı̇, L. A., Bao, G. ve Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature, 31, 827–832. https://doi.org/10.1038/nbt.2647 CR - Jı̇nek, M., Chylı̇nskı̇, K., Fonfara, I., Hauer, M., Doudna, J. A. ve Charpentı̇er, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sci̇ence, 337(6096), 816-821. https://doi.org/10.1126/science.1225829 CR - Kahrmann, J. ve Leggewi̇e, G. (2024). European commission’s plans for a special regulation of plants created by new genomic techniques . European Papers, (9), 21-38. https://doi.org/10.15166/2499-8249/740 CR - Koonı̇n, E. V. ve Makarova, K. S. (2017). Mobile genetic elements and evolution of CRISPR- Cas systems: all the way there and back. Genome Bi̇ology and Evoluti̇on, 9(10), 2812- 2825. https://doi.org/10.1093/gbe/evx192 CR - Ledford, H. (2015). CRISPR, the disruptor. Nature, 522(7554), 20-24. https://doi.org/10.1038/522020a CR - Lı̇u, N. ve Olson, E. N. (2022). CRISPR modeling and correction of cardiovascular disease. Ci̇rculati̇on Research, 130(12), 1827-1850. https://doi.org/10.1161/circresaha.122.320496 CR - Manı̇, I. (2021). CRISPR-Cas9 for treating hereditary diseases. Progress In Molecular Bi̇ology and Translati̇onal Sci̇ence, 181, 165-183. https://doi.org/10.1016/bs.pmbts.2021.01.017 CR - Mı̇ntz, R. L., Gao, M. A., Lo, K., Lao, Y., Lı̇, M. ve Leong, K. W. (2018). CRISPR technology for breast cancer: diagnostics, modeling, and therapy. Advanced Bi̇osystems, 2(11), 1800132. https://doi.org/10.1002/adbi.201800132 CR - O'Connell, M. R., Oakes, B. L., Sternberg, S. H., East-Seletsky, A., Kaplan, M. ve Doudna, J. A. (2014). Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 516, 263-266. https://doi.org/10.1038/nature13769 CR - Okolı̇, A. S., Blı̇x, T., Myhr, A. I., Xu, W. ve Xu, X. (2022). Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgeni̇c Research, 31, 1-21. https://doi.org/10.1007/s11248-021-00274-7 CR - Oye, K. A., Esvelt, K., Appleton, E., Catteruccı̇a, F., Church, G., Kuı̇ken, T., Lı̇ghtfoot, S. B., Mcnamara, J., Smı̇dler, A. ve Collı̇ns, J. P. (2014). Biotechnology. Regulating gene drives. Sci̇ence, 345(6197), 626-628. https://doi.org/10.1126/science.1254287 CR - Parums, D. V. (2024). First regulatory approvals for CRISPR-Cas9 therapeutic gene editing for sickle cell disease and transfusion-dependent β-thalassemia. Medical Sci̇ence Moni̇tor, 30, e944204. https://doi.org/10.12659/MSM.944204 CR - Rabaan, A. A., Alsaihati, H., Bukhamsin, R., Bakhrebah, M. A., Nassar, M. ve Alsaleh, A. (2023). Application of CRISPR/Cas9 Technology in Cancer Treatment: A Future Direction. Current Oncology, 30(2), 1954–1976. https://doi.org/10.3390/curroncol30020152 CR - Ran, F. A., Hsu, P. D., Wrı̇ght, J., Agarwala, V., Scott, D. A. ve Zhang, F. (2013). Genome engineering using the crispr-cas9 system. Nature Protocols, 8, 2281–2308. https://doi.org/10.1038/nprot.2013.143 CR - Rı̇croch, A., Claı̇rand, P. ve Harwood, W. (2017). Use of crispr systems in plant genome editing: toward new opportunities in agriculture. Emergi̇ng Topi̇cs in Li̇fe Sci̇ences, 1(2), 169-182. https://doi.org/10.1042/etls20170085 CR - Roger, C. R., Thibier, M. ve Toppan, A. (2024). It is time to review the EU’s outdated rules on GMOs. Erişim adresi (12 Kasım 2024): https://www.europeanscientist.com/en/features/it-is-time-to- review-the-eus-outdated-rules-on-gmos-interview. CR - Sander, J. D. ve Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Bi̇otechnology, 32(4), 347-355. https://doi.org/10.1038/nbt.2842 CR - Scheben, A., Wolter, F., Batley, J., Puchta, H. ve Edwards, D. (2017). Towards CRISPR/Cas crops - bringing together genomics and genome editing. The New Phytologi̇st, 216(3), 682-698. https://doi.org/10.1111/nph.14702 CR - Schuster, F., Aldag, P., Frenzel, A., Hadeler, K., Lucas-Hahn, A., Nı̇emann, H. ve Petersen, B. (2020). Crispr/cas12a mediated knock-in of the polled celtic variant to produce a polled genotype in dairy cattle. Sci̇enti̇fi̇c Reports, 10. https://doi.org/10.1038/s41598- 020-70531-y CR - Selle, K. ve Barrangou, R. (2015). CRISPR-based technologies and the future of food science. Journal of Food Sci̇ence, 80(11), R2367-R2372. https://doi.org/10.1111/1750-3841.13094 CR - Shan, Q., Wang, Y., Lı̇, J., Zhang, Y., Chen, K., Lı̇ang, Z., Zhang, K., Lı̇u, J., Xı̇, J. J., Qı̇u, J. ve Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Bi̇otechnology, 31, 686-688. https://doi.org/10.1038/nbt.2650 CR - Shı̇n, J. W. ve Lee, J. (2017). The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Therapeuti̇c Advances in Neurologi̇cal Di̇sorders. https://doi.org/10.1177/1756285617741837 CR - Sireli, U. T. (2024). Avrupa Birliği’nin Yeni Genomik Tekniklere Bakışı. CR - Wang, J. Y. ve Doudna, J. A. (2023). CRISPR technology: a decade of genome editing is only the beginning. Sci̇ence, 379(6629), eadd8643. https://doi.org/10.1126/science.add8643 CR - Weı̇, Y., Zhao, Z. ve Ma, X. (2022). Description of CRISPR-Cas9 development and its prospects in human papillomavirus-driven cancer treatment. Fronti̇ers in Immunology, 13, 1037124. https://doi.org/10.3389/fimmu.2022.1037124 CR - Wolt, J. D., Wang, K. ve Yang, B. (2016). The regulatory status of genome-edited crops. Plant Bi̇otechnology Journal, 14(2), 510-518. https://doi.org/10.1111/pbi.12444 CR - Xue, C. ve Greene, E. C. (2021). DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends in Genetics, 37(7), 639-656. https://doi.org/10.1016/j.tig.2021.02.008 CR - Yan, S., Tu, Z., Lı̇, S. ve Li, X. J. (2018). Use of CRISPR/Cas9 to model brain diseases. Progress in Neuro-Psychopharmacology and Bi̇ologi̇cal Psychi̇atry, 81(2), 488-492. https://doi.org/10.1016/j.pnpbp.2017.04.003 CR - Zhang, H. ve Mccarty, N. (2016). CRISPR-Cas9 technology and its application in haematological disorders. Bri̇ti̇sh Journal of Haematology, 175(2), 208-225. https://doi.org/10.1111/bjh.14297 UR - https://dergipark.org.tr/tr/pub/aeskd/issue//1665683 L1 - https://dergipark.org.tr/tr/download/article-file/4725930 ER -