TY - JOUR T1 - Yapay Zekâ Öğrenme Niyeti Ölçeği’nin Türk Kültürüne Uyarlanması: Geçerlik ve Güvenirlik Çalışması TT - Adaptation of Artificial Intelligence Learning Intention Scale to Turkish Culture: Validity and Reliability Study AU - Kurdal, Cem AU - Kaplan, Abdullah PY - 2025 DA - August Y2 - 2025 DO - 10.69918/ejte.1666160 JF - Eurasian Journal of Teacher Education JO - EJTE PB - Mesut ÖZTÜRK WT - DergiPark SN - 2717-7750 SP - 88 EP - 106 VL - 6 IS - 2 LA - tr AB - Bu çalışmada Chai ve ark. tarafından geliştirilen Yapay Zekâ Öğrenme Niyeti Ölçeği'nin Türkçe'ye uyarlanması ve psikometrik özelliklerinin öğretmen adayı ve öğretmen adaylarından oluşan bir örneklemde incelenmesi amaçlanmıştır. Uyarlama sürecinde dilsel eşdeğerliği sağlamak amacıyla çift yönlü çeviri yöntemi kullanılmış ve içerik geçerliliğini sağlamak amacıyla uzman görüşlerine başvurulmuştur. Ölçeğin yapısını incelemek amacıyla 403 öğretmen adayı ile açımlayıcı faktör analizi (AFA) ve 419 ortaokul öğretmeni ile doğrulayıcı faktör analizi (DFA) yapılmıştır. Öğretmen adayları yeni teknolojilere açık olmaları nedeniyle AFA için seçilirken, öğretmen adayları ise istikrarlı mesleki tutumları nedeniyle DFA için seçilmiştir. AFA sonuçlarına göre ölçeğin toplam varyansın %62,44'ünü açıkladığı görülmüştür. DFA bulguları iyi bir model uyumunu doğrulamıştır (örn., χ²/sd = 2,81, RMSEA = .066, CFI = .96). Cronbach alfa, Omega, Guttman ve Spearman-Brown katsayıları kullanılarak yapılan güvenilirlik analizleri .70 ile .85 arasında değişmiştir. Alt boyutlar arasındaki korelasyonlar ise .202 ile .456 arasında değişmiştir. Genel olarak, bulgular ölçeğin Türkçe versiyonunun hem hizmet öncesi hem de hizmet içi öğretmenler arasında yapay zekâ öğrenme niyetini değerlendirmek için geçerli ve güvenilir bir araç olduğunu göstermiştir. KW - Ölçek Uyarlama KW - Yapay Zekâ KW - Yapay Zekâ Öğrenme Niyeti. N2 - This study aimed to adapt the Artificial Intelligence Learning Intention Scale, originally developed by Chai et al., into Turkish and to examine its psychometric properties in a sample of pre-service and in-service teachers. During the adaptation process, the bidirectional translation method was used to ensure linguistic equivalence, and expert opinions were consulted to establish content validity. To examine the scale’s structure, exploratory factor analysis (EFA) was conducted with 403 pre-service teachers, while confirmatory factor analysis (CFA) was performed with 419 in-service secondary school teachers. Pre-service teachers were selected for EFA due to their receptiveness to new technologies, whereas in-service teachers were chosen for CFA because of their stable professional attitudes. The EFA results indicated that the scale explained 62.44% of the total variance. CFA findings confirmed a good model fit (e.g., χ²/df = 2.81, RMSEA = .066, CFI = .96). Reliability analyses using Cronbach’s alpha, Omega, Guttman, and Spearman-Brown coefficients ranged from .70 to .85. Correlations between sub-dimensions varied from .202 to .456. Overall, the findings demonstrated that the Turkish version of the scale is a valid and reliable instrument for assessing AI learning intention among both pre-service and in-service teachers. CR - Abbasi, B. N., Wu, Y., & Luo, Z. (2025). Exploring the impact of artificial intelligence on curriculum development in global higher education institutions. Education and Information Technologies, 30, 547–581. https://doi.org/10.1007/s10639-024-13113-z CR - Aggarwal, D., Sharma, D., & Saxena, A. B. (2024). Smart education: An emerging teaching pedagogy for ınteractive and adaptive learning methods. Journal of Learning and Educational Policy, (44), 1-9. https://doi.org/10.55529/jlep.44.1.9 CR - Aksekili, E., & Kan, A. (2024). Öğretmenlerin eğitimde yapay zekâ kullanımına yönelik tutum ölçeği geliştirme: Geçerlik ve güvenirlik çalışması. 21. Yüzyılda Eğitim ve Toplum, 13(39), 525–541. https://dergipark.org.tr/tr/download/article-file/3875249 CR - Avcı, E. (2023). Yapay zekânın toplumsal karşılığı ve karşıtlığı üzerine bir derleme. Yalova Sosyal Bilimler Dergisi, 14(1), 239–260. https://dergipark.org.tr/tr/pub/yalovasosbil/issue/87936/1419070 CR - Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191. https://doi.org/10.1097/00007632-200012150-00014 CR - Brislin, R. W. (1986). The wording and translation of research instruments. In W. J. Lonner & J. W. Berry (Eds.), Field methods in educational research (1st ed., pp. 137–164). Sage. CR - Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: Guilford Press. CR - Büyüköztürk, Ş. (2018). Sosyal bilimler için veri analizi el kitabı. Pegem Akademi. CR - Büyüköztürk, Ş., Çakmak, A. K., Akgün, Ö. A., Karadeniz, Ş., & Demirel, F. (2013). Bilimsel araştırma yöntemleri (14. baskı). Pegem Akademi. CR - Chai, C. S., Yu, D., King, R. B., & Zhou, Y. (2024). Development and validation of the artificial intelligence learning intention scale (AILIS) for university students. Sage Open, 14(2). https://doi.org/10.1177/21582440241242188 CR - Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510 CR - Chinaka, T.W. (2021). The effect of PhET simulation vs. phenomenon-based experiential learning on students’ integration of motion along two independent axes in projectile motion. African Journal of Research in Mathematics, Science and Technology Education, 25(2), 185–196. https://doi.org/10.1080/18117295.2021.1969739 CR - Chung, K., Kim, S., Jang, Y., Choi, S., & Kim, H. (2025). Developing an AI literacy diagnostic tool for elementary school students. Education and Information Technologies, 30, 1013–1044. https://doi.org/10.1007/s10639-024-13097-w CR - Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1), 7. https://doi.org/10.7275/jyj1-4868 CR - Çelik, H.E., & Yılmaz, V. (2016). LISREL 9.1 ile yapısal eşitlik modellemesi: Temel kavramlar-uygulamalar-programlama. Anı Yayıncılık. CR - Çetin, E., & Aktaş, M. (2023). Öğretmen adaylarının yapay zekâ algıları: Nitel bir araştırma. Eğitim ve Teknoloji Dergisi, 5(2), 45–60. https://dergipark.org.tr/tr/download/article-file/4283191 CR - Daher, W.M. (2020). Grade 10 students’ technology-based exploration processes of narratives associated with the sine function. EURASIA Journal of Mathematics, Science and Technology Education, 16(6), em1852 https://doi.org/10.29333/ejmste/7897 CR - DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Sage Publications. CR - DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications. Sage publications. CR - Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399–412. https://doi.org/10.1111/bjop.12046 CR - Durmuş, B., Yurtkoru, E. S., & Çinko, M. (2013). Sosyal bilimlerde SPSS'le veri analizi (5. baskı). Beta Yayıncılık. CR - Elçiçek, M. (2024). Öğrencilerin yapay zekâ okuryazarlığı üzerine bir inceleme. Bilgi ve İletişim Teknolojileri Dergisi, 6(1), 24-35. https://doi.org/10.53694/bited.1460106 CR - Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8(3), 430-457. https://doi.org/10.1207/S15328007SEM0803_5 CR - Erdoğan, T. E., & Ekşioğlu, S. (2024). Yapay zekâ okuryazarlığı ölçeği’nin Türkçeye uyarlanması. Türk Eğitim Bilimleri Dergisi, 22(2), 1196-1211. https://doi.org/10.37217/tebd.1496716 CR - Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. https://doi.org/10.1037/1082-989X.4.3.272 CR - Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Sage. CR - Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104 CR - Gökçe Tekin, Ö. (2025). Yapay zekâ okuryazarlık ölçeği geliştirme ve doğrulama çalışması. Batı Anadolu Eğitim Bilimleri Dergisi, 16(1), 418-434. https://doi.org/10.51460/baebd.1609636 CR - Görgülü, D., Coşkun, F., Demir, M., & Sipahioğlu, M. (2025). A psychometric analysis of the artificial intelligence skills scale developed through ChatGPT. Education and Information Technologies, 30, 1-24. https://doi.org/10.1007/s10639-024-13294-7 CR - Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning. CR - Hambleton, R. K., Merenda, P., & Spielberger, C. (Eds.). (2005). Adapting educational and psychological tests for cross-cultural assessment. Lawrence Erlbaum. CR - Kaya, F., Yetişensoy, O., Aydın, F., & Kaya, M. D. (2024). Yapay zekâ korkusu ölçeğinin Türkçe’ye uyarlanması. Ordu Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Araştırmaları Dergisi, 14(2), 554-567. https://doi.org/10.48146/odusobiad.1264103 CR - Li, M. Integrating Artificial Intelligence in Primary Mathematics Education: Investigating Internal and External Influences on Teacher Adoption. International Journal of Science and Mathematics Education, 23(5), 1283–1308. https://doi.org/10.1007/s10763-024-10515-w CR - Lim, E. M. (2023). The effects of pre-service early childhood teachers’ digital literacy and self-efficacy on their perception of AI education for young children. Education and Information Technologies, 28(10), 12969-12995. https://doi.org/10.1007/s10639-023-11724-6 CR - Liu, J., Zhang, L., Wei, B., & Zheng, Q. (2022). Virtual teaching assistants: Technologies, applications and challenges. In F. Chen & J. Zhou (Eds.), Humanity driven AI (1st ed., pp. 255-277). Springer. https://doi.org/10.1007/978-3-030-72188-6_13 CR - Orhan, A., Aydın Yıldız, T., & Çınar Yağcı, Ş. (2024). Assessing EFL learners’ attitudes on generative artificial intelligence: Development and validation of generative artificial intelligence attitude scale for EFL learners (GenAIAS). Journal of Research on Technology in Education, 56(3) 1-21. https://doi.org/10.1080/15391523.2024.2437744 CR - Perkash, A., Shaheen, Q., Saleem, R., Rustam, F., Villar, M. G., Alvarado, E. S., ... & Ashraf, I. (2024). Feature optimization and machine learning for predicting students’ academic performance in higher education institutions. Education and Information Technologies, 29(16), 21169-21193. https://doi.org/10.1007/s10639-024-12698-9 CR - Polatgil, M., & Güler, A. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçe’ye uyarlanması: Adaptation of artificial intelligence literacy scale into Turkish. Sosyal Bilimlerde Nicel Araştırmalar Dergisi, 3(2), 99-114. CR - Pregowska, A., Masztalerz, K., Garlińska, M., & Osial, M. (2021). A worldwide journey through distance education—from the post office to virtual, augmented and mixed realities, and education during the COVID-19 pandemic. Education Sciences, 11(3), 118. https://doi.org/10.3390/educsci11030118 CR - Raykov, T., & Marcoulides, G. A. (2006). On multilevel model reliability estimation from the perspective of structural equation modeling. Structural Equation Modeling, 13(1), 130-141. https://doi.org/10.1207/s15328007sem1301_7 CR - Santandreu-Calonge, D., Medina-Aguerrebere, P., Hultberg, P., & Shah, M. A. (2023). Can ChatGPT improve communication in hospitals? Profesional de la información, 32(2). https://doi.org/10.3145/epi.2023.mar.19 CR - Seyrek, M., Yıldız, S., Emeksiz, H., Şahin, A., & Türkmen, M. T. (2024). Öğretmenlerin eğitimde yapay zekâ kullanımına yönelik algıları. International Journal of Social and Humanities Sciences Research (JSHSR), 11(106), 845-856. https://doi.org/10.5281/zenodo.11113077 CR - Shin, D. (2020). User perceptions of algorithmic decisions in the personalized AI system: Perceptual evaluation of fairness, accountability, and transparency. Journal of Broadcasting & Electronic Media, 64(4), 541–565. https://doi.org/10.1080/08838151.2020.1843357 CR - Sousa, V. D., & Rojjanasrirat, W. (2011). Translation, adaptation and validation of instruments or scales for use in cross-cultural health care research: A clear and user-friendly guideline. Journal of Evaluation in Clinical Practice, 17(2), 268–274. https://doi.org/10.1111/j.1365-2753.2010.01434.x CR - Streiner, D. L. (1994). Figuring out factors: The use and misuse of factor analysis. Canadian Journal of Psychiatry, 39(3), 135-140. https://doi.org/10.1177/0706743794039003 CR - Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakhimova, G., & Vasileva, T. (2024). AI‐driven adaptive learning for sustainable educational transformation. Sustainable Development, 33(2), 1921-1947. https://doi.org/10.1002/sd.3221 CR - Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6. ed.). Pearson Education. CR - Tapalova, O., & Zhiyenbayeva, N. (2022). Artificial intelligence in education: AIEd for personalised learning pathways. Electronic Journal of e-Learning, 20(5), 639–653. https://doi.org/10.34190/ejel.20.5.2597 CR - Tat, O., & Doğan, N. (2018). Uluslararası Bilgisayar ve Bilgi Teknolojileri Okuryazarlığı Testinin Madde-Birey Dağılımı ve Değişen Madde Fonksiyonu Yönünden İncelenmesi. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 38(3), 1207–1231. https://doi.org/10.17152/gefad.321630 CR - Trizano-Hermosilla, I., & Alvarado, J. M. (2016). Best alternatives to cronbach’s alpha reliability in realistic conditions: congeneric and asymmetrical measurements. Frontiers in Psychology, 7, 769. https://doi.org/10.3389/fpsyg.2016.00769 CR - Turgut, D., & Kunuroglu, F. (2025). Adaptation of the Student Attitudes toward Artificial Intelligence Scale (SATAI) to the Turkish Context: A Sample of Emerging Adults. International Journal of Human–Computer Interaction, 41(11), 1-11. https://doi.org/10.1080/10447318.2025.2474474 CR - Üzüm, B., Elçiçek, M., & Pesen, A. (2024). Development of teachers’ perception scale regarding artificial intelligence use in education: Validity and reliability study. International Journal of Human–Computer Interaction, 1-12. https://doi.org/10.1080/10447318.2024.2385518 CR - Van de Vijver, F. J., & Poortinga, Y. H. (1997). Towards an integrated analysis of bias in cross-cultural assessment. European Journal of Psychological Assessment, 13(1), 29-37. https://doi.org/10.1027/1015-5759.13.1.29 CR - Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540 CR - Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806–838. https://doi.org/10.1177/0011000006288127 CR - Yılmaz, F. G. K., & Yılmaz, R. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçeye uyarlanması. Bilgi ve İletişim Teknolojileri Dergisi, 5(2), 172-190. https://doi.org/10.53694/bited.1376831 CR - Yılmaz, F. G. K., Yılmaz, R., & Ceylan, M. (2024). Generative artificial intelligence acceptance scale: A validity and reliability study. International Journal of Human–Computer Interaction, 40(24), 8703-8715. https://doi.org/10.1080/10447318.2023.2288730 CR - Žáková, K., Urbano, D., Cruz-Correia, R., Guzmán, J. L., & Matišák, J. (2024). Exploring student and teacher perspectives on ChatGPT’s impact in higher education. Education and Information Technologies, 30(1), 649-692. https://doi.org/10.1007/s10639-024-13184-y UR - https://doi.org/10.69918/ejte.1666160 L1 - https://dergipark.org.tr/tr/download/article-file/4728056 ER -