TY - JOUR T1 - ÜRETKEN YAPAY ZEKÂNIN ÜRETİM SÜREÇLERİNE ETKİLERİ: UZMAN GÖRÜŞLERİ, UYGULAMA ÖRNEKLERİ VE GELECEK PERSPEKTİFLERİ TT - THE IMPACT OF GENERATIVE ARTIFICIAL INTELLIGENCE ON MANUFACTURING PROCESSES: EXPERT OPINIONS, APPLICATIONS, AND FUTURE PERSPECTIVES AU - Çıkmak, Sinan PY - 2025 DA - October Y2 - 2025 DO - 10.35379/cusosbil.1670749 JF - Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi PB - Çukurova Üniversitesi WT - DergiPark SN - 1304-8899 SP - 1775 EP - 1797 VL - 34 IS - 2 LA - tr AB - Üretken yapay zekâ, son derece güncel ve hızla gelişen bir teknolojidir ve üretim süreçlerinde önemli bir dönüşüm yaratma potansiyeline sahiptir. Ancak, bu teknolojinin üretim operasyonlarına nasıl entegre edileceği, uygulama alanları ve uzun vadeli etkileri konusunda uygulamada ve akademik literatürde sınırlı sayıda çalışma bulunmaktadır. Bu bağlamda, yürütülen bu araştırma, üretken yapay zekânın üretim süreçlerine etkilerini ele almayı amaçlamaktadır. Çalışmada nitel araştırma yöntemi benimsenmiştir. Veri toplama sürecinde ise doküman analizi ve yarı yapılandırılmış mülakat teknikleri kullanılmıştır. Doküman analizi kapsamında, akademik makaleler, uluslararası ölçekte faaliyet gösteren danışmanlık firmalarının araştırma raporları, basın bültenleri ve üretim işletmelerindeki pilot uygulamalara dair yayımlanmış haber içerikleri incelenmiştir. Ayrıca, üretim süreçleri ve üretken yapay zekâ teknolojileri konusunda bilgi sahibi uzmanlarla yarı yapılandırılmış mülakatlar gerçekleştirilmiştir. Elde edilen veriler betimsel analiz yöntemiyle değerlendirilmiş ve üretken yapay zekânın üretim süreçlerindeki mevcut durumu ve gelecekteki potansiyeli detaylı bir şekilde ortaya konmuştur. Bulgular, ürün tasarımı, talep tahmini, üretim planlama, kestirimci bakım, kalite kontrol, iş gücü geliştirme, fabrika yerleşim planlaması, stok yönetimi ve süreç optimizasyonu olmak üzere belirlenen dokuz temel üretim faaliyeti altında sunulmuştur. Bu çalışmanın, üretken yapay zekânın üretim süreçlerine entegrasyonu konusunda uygulayıcılara içgörü sağlaması ve araştırmacılara yol göstermesi beklenmektedir. Ayrıca, konuyla ilgili mevcut akademik boşluğun doldurulmasına katkı sunarak literatüre değerli bir perspektif kazandırması amaçlanmaktadır. KW - Dijital dönüşüm KW - Üretken yapa zekâ KW - Üretim Süreçleri N2 - Generative artificial intelligence is an emerging and rapidly evolving technology with the potential to significantly transform manufacturing processes. However, there is a lack of extensive studies in both practical and academic literature regarding the integration of this technology into manufacturing operations, its fields of application, and its long-term effects. In this regard, the present study aims to explore the effects of generative artificial intelligence on manufacturing processes. A qualitative research approach was adopted. Data were collected through document analysis and semi-structured interviews. The document analysis included a review of academic publications, research reports by internationally recognized consultancy firms, press releases, and published news articles on pilot applications in manufacturing firms. Additionally, semi-structured interviews were conducted with experts who have in-depth knowledge of manufacturing processes and generative artificial intelligence technologies. The collected data were analyzed using a descriptive analysis method, providing a detailed overview of the current status and future potential of generative artificial intelligence in manufacturing processes. The findings are presented under nine key manufacturing activities: product design, demand forecasting, production planning, predictive maintenance, quality control, workforce development, factory layout planning, inventory management, and process optimization. This study aims to offer valuable insights for practitioners and guidance for researchers on integrating generative artificial intelligence into manufacturing processes. Moreover, it seeks to contribute to the academic literature by addressing the current research gap and to offer a valuable perspective on the subject. CR - Achenbach, J., Arbeiter, K., Mellors, N., & Shahani, R. (2024). Harnessing generative AI in manufacturing and supply chains. McKinsey. https://www.mckinsey.com/capabilities/operations/our-insights/operations-blog/harnessing-generative-ai-in-manufacturing-and-supply-chains, Erişim Tarihi: 22.01.2025 CR - Airbus. (2024). How Airbus uses generative artificial intelligence to reinvent itself. https://www.airbus.com/en/newsroom/stories/2024-05-how-airbus-uses-generative-artificial-intelligence-to-reinvent-itself, Erişim Tarihi: 24.01.2025 CR - Al-khatib, A. W., Moh'd Anwer, A. S., & Khattab, M. (2024). How can generative artificial intelligence improve digital supply chain performance in manufacturing firms? Analyzing the mediating role of innovation ambidexterity using hybrid analysis through CB-SEM and PLS-SEM. Technology in Society, 78, 102676. https://doi.org/10.1016/j.techsoc.2024.102676 CR - Altunuşık, R., Boz, H., Gegez, A.E., Koç, E., Sığrı, Ü., Yıldız, E., & Yüksel, A. (2023). Sosyal Bilimlerde Araştırma Yöntemleri: Yeni Perspektifler. (2. Baskı). Seçkin Yayıncılık CR - Amaral, A. R. (2006). On the exact solution of a facility layout problem. European Journal of operational research, 173(2), 508-518. https://doi.org/10.1016/j.ejor.2004.12.021 CR - Aromaa, S., Heikkilä, P., Jurvansuu, M., Pehlivan, S., Väärä, T., & Jurmu, M. (2025). Company perspectives of generative artificial intelligence in industrial work. Procedia Computer Science, 253, 217–226. https://doi.org/10.1016/j.procs.2025.01.085 CR - Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027 CR - Callari, T. C., & Puppione, L. (2025). Can generative artificial intelligence productivity tools support workplace learning? A qualitative study on employee perceptions in a multinational corporation. Journal of Workplace Learning, 37(3), 266–283. https://doi.org/10.1108/JWL-11-2024-0258 CR - Capgemini. (2024). Harnessing the value of generative AI: 2nd edition Top uses cases across sectors. Capgemini Research Institute. https://www.capgemini.com/wp-content/uploads/2024/07/Generative-AI-in-Organizations-Refresh-1.pdf, Erişim Tarihi: 23.01.2025 CR - Christmann, D. (2023). Bosch to use generative AI in manufacturing. Bosch. https://www.bosch-presse.de/pressportal/de/en/bosch-to-use-generative-ai-in-manufacturing-260806.html, Erişim Tarihi: 10.02.2025 CR - Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., Yee, L., & Zemmel, R. (2023). The economic potential of generative AI: The next productivity frontier. McKinsey & Company. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier?cid=eml-web, Erişim Tarihi: 10.02.2025 CR - Cooper, D., & Schindler, P. (2014). Business research methods (12. Baskı). McGraw-Hill. CR - Disselkamp, J.-P., Kurpick, D., Schutte, B., Hovemann, A., & Dumitrescu, R. (2024). Use Cases of Generative AI İçinde: Factory Planning: Potential and Challenges. In J. Malmqvist, M. Candi, R. J. Saemundsson, F. Bystrom, & O. Isaksson (Ed.), DS 130: Proceedings of NordDesign 2024, Reykjavik, Iceland, 12th-14th August 2024 (ss. 196–205). NordDESIGN. https://doi.org/10.35199/NORDDESIGN2024.22 CR - Doanh, D. C., Dufek, Z., Ejdys, J., Ginevičius, R., Korzynski, P., Mazurek, G., ... & Ziemba, E. (2023). Generative AI in the manufacturing process: theoretical considerations. Engineering Management in Production and Services, 15(4), 76–89. https://doi.org/10.2478/emj-2023-0029 CR - Encord. (2024). Real-World Use Cases of Generative AI in Manufacturing. https://encord.com/blog/generative-ai-in-manufacturing/?utm_source=chatgpt.comi, Erişim Tarihi: 21.06.2025 CR - Filz, M. A., & Thiede, S. (2024). Generative AI in Manufacturing Systems: Reference Framework and Use Cases. IFAC-PapersOnLine, 58, 238–243. https://doi.org/10.1016/j.procir.2024.10.082 CR - Fosso Wamba, S., Guthrie, C., Queiroz, M. M., & Minner, S. (2024). ChatGPT and generative artificial intelligence: an exploratory study of key benefits and challenges in operations and supply chain management. International Journal of Production Research, 62(16), 5676-5696. https://doi.org/10.1080/00207543.2023.2294116 CR - Gao, R. X., Krüger, J., Merklein, M., Möhring, H.-C., & Váncza, J. (2024). Artificial intelligence in manufacturing: State of the art, perspectives, and future directions. CIRP Annals, 73(2), 723–749. https://doi.org/10.1016/j.cirp.2024.04.101 CR - Ghobakhloo, M., Fathi, M., Iranmanesh, M., Vilkas, M., Grybauskas, A., & Amran, A. (2024). Generative artificial intelligence in manufacturing: opportunities for actualizing Industry 5.0 sustainability goals. Journal of Manufacturing Technology Management, 35(9), 94-121. https://doi.org/10.1108/JMTM-12-2023-0530 CR - Gupta, R., & Rathore, B. (2024). Exploring the generative AI adoption in service industry: A mixed-method analysis. Journal of Retailing and Consumer Services, 81, 103997. https://doi.org/10.1016/j.jretconser.2024.103997 CR - Haridasan, P. K., & Jawale, H. (2024) Generative AI in Manufacturing: A Review of Innovations, Challenges and Future Prospects. J Artif Intell Mach Learn & Data Sci, 2(2), 1418-1424. https://doi.org/10.51219/JAIMLD/praveen-haridasan/321 CR - Hieu, H. D. (2023). Incorporating Generative AI into Quality Management Systems Enhancing Process Optimization and Product Development. International Journal of Applied Machine Learning and Computational Intelligence, 13(11), 1-8. https://neuralslate.com/index.php/Machine-Learning-Computational-I/article/view/65 CR - Hu, F., Wang, C., & Wu, X. (2025). Generative artificial intelligence-enabled facility layout design paradigm. Applied Sciences, 15(10), 5697. https://doi.org/10.3390/app15105697 CR - Huang, A. H., Wang, H., & Yang, Y. (2023). FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2), 806-841. https://doi.org/10.1111/1911-3846.12832 CR - Inam, A. (2024). Transforming Demand Planning With Generative AI. Forbes. https://www.forbes.com/councils/forbestechcouncil/2024/03/06/transforming-demand-planning-with-generative-ai/ Erişim Tarihi: 09.02.2025 CR - Jackson, I., Ivanov, D., Dolgui, A., & Namdar, J. (2024). Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation. International Journal of Production Research, 62(17), 6120-6145. https://doi.org/10.1080/00207543.2024.2309309 CR - Jide-Jegede, M., & Omotesho, T. (2024). Harnessing Generative AI for Manufacturing Innovation: Applications and Opportunities. 2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) içinde (ss. 568-572). IEEE. CR - Kanbach, D. K., Heiduk, L., Blueher, G., Schreiter, M., & Lahmann, A. (2024). The GenAI is out of the bottle: generative artificial intelligence from a business model innovation perspective. Review of Managerial Science, 18(4), 1189-1220. https://doi.org/10.1007/s11846-023-00696-z CR - Kar, A. K., Varsha, P. S., & Rajan, S. (2023). Unravelling the impact of generative artificial intelligence (GAI) in industrial applications: A review of scientific and grey literature. Global Journal of Flexible Systems Management, 24(4), 659-689. https://doi.org/10.1007/s40171-023-00356-x CR - Keskar, A. (2024). Driving Operational Excellence in Manufacturing through Generative AI: Transformative Approaches for Efficiency, Innovation, and Scalability. International Journal of Research and Analytical Reviews (IJRAR), 11(1), 245–261. CR - Klar, M., Ruediger, P., Schuermann, M., Gören, G. T., Glatt, M., Ravani, B., & Aurich, J. C. (2024). Explainable generative design in manufacturing for reinforcement learning based factory layout planning. Journal of Manufacturing Systems, 72, 74-92. https://doi.org/10.1016/j.jmsy.2023.11.012 CR - Kusiak, A. (2024). Generative artificial intelligence in smart manufacturing. Journal of Intelligent Manufacturing, 36, 1-3. https://doi.org/10.1007/s10845-024-02480-6 CR - Lune, H., & Berg, B. L. (2017). Qualitative Research Methods for the Social Sciences (9. Baskı). Pearson. CR - Mercedes-Benz Group. (2023). Mercedes-Benz tests ChatGPT in intelligent vehicle production. https://group.mercedes-benz.com/innovation/digitalisation/industry-4-0/chatgpt-in-vehicle-production.html, Erişim Tarihi: 02.02.2025 CR - Nie, S., Li, N., & Yang, Y. (2024). Opportunities, Challenges and Countermeasures of Generative Artificial Intelligence Enabling Manufacturing-A Case Study of ChatGPT. In 2024 5th International Conference on Management Science and Engineering Management (ICMSEM 2024) (pp. 1265-1273). Atlantis Press. CR - Ooi, K.-B., Tan, G. W.-H., Al-Emran, M., Al-Sharafi, M. A., Capatina, A., Chakraborty, A., Dwivedi, Y. K., Huang, T.-L., Kar, A. K., Lee, V.-H., Loh, X.-M., Micu, A., Mikalef, P., Mogaji, E., Pandey, N., Raman, R., Rana, N. P., Sarker, P., Sharma, A., … Wong, L.-W. (2025). The Potential of Generative Artificial Intelligence Across Disciplines: Perspectives and Future Directions. Journal of Computer Information Systems, 65(1), 76–107. https://doi.org/10.1080/08874417.2023.2261010 CR - Peres, R., Schreier, M., Schweidel, D., & Sorescu, A. (2023). On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice. International Journal of Research in Marketing, 40(2), 269-275. https://doi.org/10.1016/j.ijresmar.2023.03.001 CR - Pohrebniyak, I. (2025, May 23). Generative AI in supply chain: How to make planning easier and more cost-effective. Master of Code. https://masterofcode.com/blog/generative-ai-in-supply-chain, Erişim Tarihi: 21.06.2025 CR - Prajapati, D. K., Mathiyazhagan, K., Agarwal, V., Khorana, S., & Gunasekaran, A. (2024). Enabling industry 4.0: Assessing technologies and prioritization framework for agile manufacturing in India. Journal of Cleaner Production, 447, 141488. https://doi.org/10.1016/j.jclepro.2024.141488 CR - Prasad Agrawal, K. (2023). Towards Adoption of Generative AI in Organizational Settings. Journal of Computer Information Systems, 64(5), 636–651. https://doi.org/10.1080/08874417.2023.2240744 CR - Rai, R., Tiwari, M. K., Ivanov, D., & Dolgui, A. (2021). Machine learning in manufacturing and industry 4.0 applications. International Journal of Production Research, 59(16), 4773–4778. https://doi.org/10.1080/00207543.2021.1956675 CR - Şahin, O., & Karayel, D. (2024). Generative Artificial Intelligence (GenAI) in Business: A Systematic Review on the Threshold of Transformation. Journal of Smart Systems Research, 5(2), 156-175. https://doi.org/10.58769/joinssr.1597110 CR - Şahin, R., Niroomand, S., Durmaz, E. D., & Molla-Alizadeh-Zavardehi, S. (2020). Mathematical formulation and hybrid meta-heuristic solution approaches for dynamic single row facility layout problem. Annals of Operations Research, 295(1), 313-336. https://doi.org/10.1007/s10479-020-03704-7 CR - Sak, R., Şahin Sak, İ. T., Öneren Şendil, Ç., Nas, E. (2021). Bir araştırma yöntemi olarak doküman analizi. Kocaeli Üniversitesi Eğitim Dergisi, 4(1), 227-256. https://doi.org/10.33400/kuje.843306 CR - Schmalbach, A. (2025). The Role of Generative AI in Process Optimization: Hype or Reality? Salient Process. https://www.salientprocess.ai/blog/the-role-of-gen-ai-in-process-optimization, Erişim Tarihi: 30.03.2025 CR - Shafiq, M., Thakre, K., Pandurangan, R., & Lalitha, R. V. S. (2025). Generative AI designs the next generation of smart materials from pixels to products. The International Journal of Advanced Manufacturing Technology, 1-12. https://doi.org/10.1007/s00170-025-14999-w CR - Siemens. (2024). Generative artificial intelligence takes Siemens’ predictive maintenance solution to the next level. https://press.siemens.com/global/en/pressrelease/generative-artificial-intelligence-takes-siemens-predictive-maintenance-solution-next, Erişim Tarihi: 23.01.2025 CR - Tadayonrad, Y., & Ndiaye, A. B. (2023). A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality. Supply Chain Analytics, 3, 100026. https://doi.org/10.1016/j.sca.2023.100026 CR - Toyota Media Site. (2023). Toyota Research Institute develops new AI technique with potential to help speed up vehicle design. Toyota. https://media.toyota.co.uk/toyota-research-institute-develops-new-ai-technique-with-potential-to-help-speed-up-vehicle-design/, Erişim Tarihi: 23.01.2025 CR - Walton, R. O., & Watkins, D. V. (2024). The use of generative AI in research: a production management case study from the aviation industry. Journal of Marketing Analytics, 1-6. https://doi.org/10.1057/s41270-024-00317-y CR - Webb, T., Holyoak, K. J., & Lu, H. (2023). Emergent analogical reasoning in large language models. Nature Human Behaviour, 7(9), 1526-1541. https://doi.org/10.1038/s41562-023-01659-w CR - Wiendahl, H.-P., Reichardt, J., & Nyhuis, P. (2015). Handbook Factory Planning and Design (1st Ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-46391-8 CR - Yafei, X., Wu, Y., Song, J., Gong, Y., & Lianga, P. (2024). Generative AI in Industrial Revolution: A Comprehensive Research on Transformations, Challenges, and Future Directions. Journal of Knowledge Learning and Science Technology, 3(2), 11-20. https://doi.org/10.60087/jklst.vol.3n2.p20 CR - Yao, R. (2023). Insilico Medicine Uses Generative AI to Accelerate Drug Discovery. NVIDIA. https://blogs.nvidia.com/blog/insilico-medicine-uses-generative-ai-to-accelerate-drug-discovery/, Erişim Tarihi: 24.01.2025 CR - Yıldırım, A., & Şimsek, H. (2013). Sosyal Bilimlerde Nitel Araştırma Yöntemleri (9. Baskı). Seçkin Yayıncılık CR - Etik Kurul Onayı Bu çalışmada kapsamında uygulanan veri toplama araçları, Düzce Üniversitesi Bilimsel Araştırma ve Yayın Etiği Kurulu’nun 27.02.2025 tarihli ve 2025/78 sayılı kararı ile etik açıdan uygun bulunmuştur. UR - https://doi.org/10.35379/cusosbil.1670749 L1 - https://dergipark.org.tr/tr/download/article-file/4748659 ER -