TY - JOUR T1 - Emotional State Analysis of Duzce University Students Using MODUM Application Data with Data Mining Methods TT - Veri Madenciliği Yöntemleri ile MODUM Uygulaması Verilerinden Yararlanarak Düzce Üniversitesi Öğrencilerinin Duygu Durum Analizi AU - Rezek, Diana AU - Kendirli, Oğuzhan PY - 2025 DA - June Y2 - 2025 DO - 10.5281/zenodo.15760667 JF - Inspiring Technologies and Innovations JO - INOTECH PB - Kastamonu Üniversitesi WT - DergiPark SN - 2822-6062 SP - 25 EP - 32 VL - 4 IS - 1 LA - en AB - The academic and social performance of students is significantly impacted by their mental health, which is a pivotal component of public health. It is well-documented that students in universities often undergo substantial psychological and emotional changes that can profoundly impact their daily behaviors and established mental health state. These alterations may manifest as a range of symptoms, including decreased focus and academic performance, as well as potential psychological discomfort and feelings of loneliness. The present study examines the psychological well-being of students at Duzce University in this regard. The study aims to categorize students' emotional states and identify those who could benefit from prompt psychological assistance. To this end, the study employs data mining and text mining techniques. This study was based on data previously collected from MODUM, an application used by Duzce University. To achieve this goal, the study integrates a range of data mining and text mining techniques for the classification of emotional states. The machine learning algorithms employed include Naive Bayes, Random Forest, Decision Tree (J48), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Logistic Regression. These algorithms were implemented across multiple software environments, such as Python, MATLAB, and R. Additionally, a variety of natural language processing techniques, including Bag of Words, TF-IDF, Word2Vec, and FastText, were used for effective text representation and preprocessing. KW - Data mining KW - Sentiment analysis KW - Text mining KW - Classification N2 - Ruh sağlığı, genel insan sağlığının ayrılmaz bir parçasıdır. Ruh sağlığı, tatmin, mutluluk ve duygusal istikrar duygularıyla ilgilidir. Bir öğrencinin psikolojik durumu aynı zamanda enerji seviyesini, zihinsel kapasitesini, konsantrasyonunu ve performansını da etkiler. Bu çalışmada Düzce Üniversitesi öğrencilerinin duygusal durumları veri madenciliği ve metin madenciliği kullanılarak analiz edilmiştir. Veriler, öğrencilerin emojileri kullanarak günlük ruh hallerini belirleyebilecekleri ve WhatsApp aracılığıyla destek ekibiyle iletişim kurabilecekleri bir platform olan MODUM uygulaması aracılığıyla toplandı. Veriler, kısa mesajlarla çizilen emojilerle etkileşimlere göre kategorize edildi ve akademik bölüm tarafından toplandı.Verilerin rastgeleliği ve mantıksızlığı göz önüne alındığında, metin verilerini işlemek için Bag of Words, Word2Vec, TF-IDF ve FastText gibi bazı teknikler önerildi. Öğrenci duygu verilerini işlemek için aşağıdaki teknikler de önerildi: Naive Bayes, Rastgele Orman, J48, Destek Vektör Makinesi, Yapay Sinir Ağları ve Lojistik Regresyon. Duyguları olumsuz ve olumlu duygular olarak sınıflandırmak için algoritmalar uygulandı. Algoritmalar uygulandıktan sonra modeller şu önemli kriterlere göre değerlendirildi: Doğruluk, Kesinlik, Hatırlama ve F1 puanı. Sonuçlar, üniversitedeki her bölümdeki öğrencilerin psikolojik durumuna ışık tutarak, ek psikolojik bakım, yardım ve desteğe ihtiyacı olan bölümlerin ve öğrencilerin belirlenmesine yardımcı oldu.Özetle bu araştırma, öğrencilere yardımcı olmak, destek ve erken müdahale sağlamak için Düzce Üniversitesi'nin izlediği stratejiler geliştirme fırsatı sunmaktadır. CR - [1] D. Demirezen, Üniversite Öğrencilerinin Psikolojik İyilik Halini Belirlemek İçin Bir Mobil Uygulama Geliştirilmesi. Ph.D. Thesis, Düzce Üniversitesi, 2023. CR - [2] S. Hussain, N. A. Dahan, F. M. Ba-Alwib, and N. Ribata, Educational Data Mining and Analysis of Students’ Academic Performance Using WEKA. Article, Indonesian Journal of Electrical Engineering and Computer Science, vol. 9, no. 2, pp. 447–459, 2018. CR - [3] K. K, M. M. Najumuddeen ve S. R, Applications of Data Mining Techniques in Healthcare and Prediction of Heart Attacks. Makale, International Journal of Data Mining Techniques and Applications, Cilt 9, Sayı 1, ss. 250–255, 2020. CR - [4] M. Al-Batah, M. S. Alzboon, M. Alqaraleh, and F. A. Alzaghoul, Comparative Analysis of Advanced Data Mining Methods for Enhancing Medical Diagnosis and Prognosis. Article, Data Metadata, vol. 3, November 2024. CR - [5] A. S. Alghamdi and A. Rahman, Data Mining Approach to Predict Success of Secondary School Students: A Saudi Arabian Case Study. Article, Educ. Sci., vol. 13, no. 3, 2023. CR - [6] T. Wongvorachan, S. He, and O. Bulut, A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining. Article, Inf., vol. 14, no. 1, 2023. CR - [7] M. S. U. Miah, M. M. Kabir, T. Bin Sarwar, M. Safran, S. Alfarhood, and M. F. Mridha, A multimodal approach to cross-lingual sentiment analysis with ensemble of transformer and LLM. Article, Sci. Rep., vol. 14, no. 1, pp. 1–18, 2024. CR - [8] D. Antons, E. Grünwald, P. Cichy, and T. O. Salge, The application of text mining methods in innovation research: current state, evolution patterns, and development priorities. Article, R D Manag., vol. 50, no. 3, pp. 329–351, 2020. CR - [9] G. D. S. P. Moreira, S. Paulo, B. Schifferer, and E. Oldridge, NV-Retriever: Improving text embedding models with effective hard-negative mining. Article, Association for Computing Machinery, vol. 1, no. 1. CR - [10] S. P. Rahayu, L. Afuan, G. A. Yunindar, E. Faculty, and U. J. Soedirman, “Implementation of text mining on song lyrics for song classification based on emotion using website-based logistic regression,” Jurnal Teknik Informatika, vol. 6, no. 1, pp. 359–368, 2025. CR - [11] B. Ramadhani and R. R. Suryono, “Komparasi Algoritma Naïve Bayes dan Logistic Regression Untuk Analisis Sentimen Metaverse,” Jurnal Media Informatika Budidarma, vol. 8, Apr. 2024, pp. 714–725. UR - https://doi.org/10.5281/zenodo.15760667 L1 - https://dergipark.org.tr/tr/download/article-file/4794339 ER -