TY - JOUR T1 - Effects of Dynamic Compression Plate (DCP) and Limited Contact Dynamic Compression Plate (LC-DCP) on Resistance of Radius against Axial Compression: Biomechanical Investigation TT - Dinamik Kompresyon Plak (DCP) ve Sınırlı Temaslı Dinamik Kompresyon (LC-DCP) Plak'ın Aksiyel Yüklenme Karşısında Radius Direnci Üzerindeki Biyomekanik Etkileri AU - Sayar, Ferhat AU - Havıtçıoğlu, Hasan AU - Husemoglu, R. Bugra AU - Bektaş, Yunus Emre AU - Güran, Ortaç AU - Kılıç, Ali İhsan PY - 2025 DA - August Y2 - 2025 DO - 10.59244/ktokusbd.1681630 JF - KTO Karatay Üniversitesi Sağlık Bilimleri Dergisi JO - KTOKUSB-D PB - KTO Karatay Üniversitesi WT - DergiPark SN - 2717-8501 SP - 254 EP - 264 VL - 6 IS - 2 LA - en AB - Objective: Dynamic compression plate (DCP) and limited contact dynamic compression plate (LC- DCP) are used for open reduction internal fixation of radial shaft fractures. They are distinguished from other systems by the principles of reduced plate-bone contact and dynamic compression. This study aims to compare the stress and deformation under axial forces in DCP and LC-DCP.Materials and Methods: The DCP and LC-DCP were applied to 16 artificial radius bones by an experienced surgeon fixed at the distal and proximal of the fracture line with three cortical screws for each. In axial loading tests, the amount of force applied to the sawbones with DCP and LC-DCP and the amount of extension were calculated.Results: DCP and LCDCP fixation plates on forearm fracture models were found to be statistically similar in terms of the applied force and displacement (p=0.161).Conclusion: The study showed both implant types (DCP and LC-DCP) could be appropriate for the fixation of forearm fractures and osteotomies due to no mechanically significant difference under axial loadings. The plate to be applied can definitely be chosen considering the cost of the plate and the anatomical requirements. KW - Dynamic Compression Plate KW - Fixation KW - Radius Bone KW - Axial Loading N2 - Amaç: Dinamik kompresyon plağı (DCP) ve sınırlı temaslı dinamik kompresyon plağı (LC-DCP), radius şaft kırıklarının açık redüksiyonlu iç fiksasyonu için kullanılır. Diğer sistemlerden, azaltılmış plak-kemik teması ve dinamik kompresyon prensipleriyle ayrılırlar. Bu çalışma, DCP ve LC-DCP'deki aksiyel kuvvetler altındaki stres ve deformasyonu karşılaştırmayı amaçlamaktadır. Yöntem: DCP ve LC-DCP, deneyimli bir cerrah tarafından 16 yapay radius kemiğine uygulandı ve her biri için üç kortikal vida ile kırık hattının distal ve proksimaline sabitlendi. Aksiyel yükleme testlerinde, DCP ve LC-DCP ile test sawbone materyallere uygulanan kuvvet miktarı ve ekstansiyon miktarı hesaplandı.Bulgular: Ön kol kırık modellerinde DCP ve LCDCP fiksasyon plaklarının uygulanan kuvvet ve yer değiştirme açısından istatistiksel olarak benzer olduğu bulundu (p=0,161).Sonuç: Çalışma, her iki implant tipinin (DCP ve LC-DCP) aksiyel yüklemeler altında mekanik olarak anlamlı bir fark olmaması nedeniyle ön kol kırıkları ve osteotomilerinin fiksasyonu için uygun olabileceğini göstermiştir. Uygulanacak plak, plak maliyeti ve anatomik gereksinimler göz önünde bulundurularak seçilebilir. CR - Aguila, A. Z., Manos, J. M., Orlansky, A. S., Todhunter, R. J., Trotter, E. J., & Van Der Meulen, M. C. H. (2005). In vitro biomechanical comparison of limited contact dynamic compression plate and locking compression plate. Veterinary and Comparative Orthopaedics and Traumatology, 18(4), 220–226. https://doi.org/10.1055/s-0038-1632958 CR - Anderson, L. D., Sisk, T. D., Tooms, R. E., & Park, W. I. (1975). Compression-plate fixation in acute diaphyseal fractures of the radius and ulna. The Journal of Bone and Joint Surgery - American Volume, 57(3), 287–297. https://doi.org/10.2106/00004623-197557030-00001 CR - Augat, P., & von Rüden, C. (2018). Evolution of fracture treatment with bone plates. Injury, 49(Supplement 2), S2–S7. https://doi.org/10.1016/S0020-1383(18)30294-8 CR - Azboy, İ., Demirtaş, A., Uçar, B. Y., Bulut, M., Alemdar, Ç., & Özkul, E. (2013). Effectiveness of locking versus dynamic compression plates for diaphyseal forearm fractures. Orthopedics, 36(7). https://doi.org/10.3928/01477447-20130624-23 CR - Bottling, M., Doornink, J., Lujan, T. J., Fitzpatrick, D. C., Marsh, J. L., Augat, P., … & Taylor, A. (2010). Effects of construct stiffness on healing of fractures stabilized with locking plates. The Journal of Bone and Joint Surgery, 92(SUPPL. 2), 12–22. https://doi.org/10.2106/JBJS.J.00780 CR - Carter, D. R., Beaupré, G. S., Giori, N. J., & Helms, J. A. (1998). Mechanobiology of skeletal regeneration. Clinical Orthopaedics and Related Research, 355(Suppl), 41–55. https://doi.org/10.1097/00003086-199810001-00006 CR - Chapman, M. W., Gordon, E., & Zissimos, A. G. (1989). Compression-plate fixation of acute fractures of the diaphyses of the radius and ulna. The Journal of Bone and Joint Surgery. American Volume, 71(2), 159–169. https://doi.org/10.2106/00004623-198971020-00001 CR - Döbele, S., Horn, C., Eichhorn, S., Buchholtz, A., Lenich, A., Burgkart, R., … & Noth, U. (2010). The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbeck’s Archives of Surgery, 395(4), 421–428. https://doi.org/10.1007/s00423-010-0636-z CR - Filipowicz, D., Lanz, O., McLaughlin, R., Elder, S., & Were, S. (2009). A biomechanical comparison of 3.5 locking compression plate fixation to 3.5 limited contact dynamic compression plate fixation in a canine cadaveric distal humeral metaphyseal gap model. Veterinary and Comparative Orthopaedics and Traumatology, 22(4), 270–277. https://doi.org/10.3415/VCOT-08-05-0042 CR - Gautier, E., & Perren, S. M. (1992). Die "Limited Contact Dynamic Compression Plate" (LC-DCP) - Biomechanische Forschung als Grundlage des neuen Plattendesigns. Orthopäde, 21(1), 11–23. Gill, S. P. S., Mittal, A., Raj, M., Singh, P., Kumar, S., & Kumar, D. (2017). Stabilisation of diaphyseal fractures of both bones forearm with limited contact dynamic compression or locked compression plate: Comparison of clinical outcomes. International Journal of Research in Orthopaedics, 3(3), 623–631. https://doi.org/10.18203/issn.2455-4510.intjresorthop20171913 CR - Grace, T. G., & Eversmann, W. W. (1980). Forearm fractures: Treatment by rigid fixation with early motion. The Journal of Bone and Joint Surgery. American Volume, 62(3), 433–438. https://doi.org/10.2106/00004623-198062030-00013 CR - Grubor, P., Mitković, M., Mitković, M., & Grubor, M. (2019). Comparison of biomechanical stability of osteosynthesis materials in long bone fractures. Medical Archives, 16(1), 88–92. https://doi.org/10.17392/985-19 CR - Haseeb, M., Muzafar, K., Ghani, A., Bhat, K. A., & Butt, M. F. (2018). A fresh look at radial shaft fracture fixation: The lateral approach to the radius. Journal of Orthopaedic Surgery, 26(2). https://doi.org/10.1177/2309499018780871 IOSR Journal of Dental and Medical Sciences. (2020). Stabilization of diaphyseal fractures of both bone forearm with limited contact dynamic compression plate vs locking compression plate: Comparison of clinical outcomes. IOSR Journal of Dental and Medical Sciences, 19(1), 37–41. https://doi.org/10.9790/0853-1901043741 CR - Kandemir, U., Augat, P., Konowalczyk, S., Wipf, F., Von Oldenburg, G., & Schmidt, U. (2017). Implant material, type of fixation at the shaft, and position of plate modify biomechanics of distal femur plate osteosynthesis. Journal of Orthopaedic Trauma, 31(8), e241–e246. https://doi.org/10.1097/BOT.0000000000000860 Klein, P., Schell, H., Streitparth, F., Heller, M., Kassi, J. P., Kandziora, F., … & Bühren, V. (2003). The initial phase of fracture healing is specifically sensitive to mechanical conditions. Journal of Orthopaedic Research, 21(4), 662–669. https://doi.org/10.1016/S0736-0266(02)00259-0 CR - Klaue, K., Kowalski, M., & Perren, S. M. (1991). Internal fixation with a self-compressing plate and lag screw: Improvements of the plate hole and screw design. 2. In vivo investigations. Journal of Orthopaedic Trauma, 5(3), 289–296. https://doi.org/10.1097/00005131-199109000-00006 Langkamer, V. G., & Ackroyd, C. E. (1991). Internal fixation of forearm fractures in the 1980s: Lessons to be learned. Injury, 22(2), 97–102. https://doi.org/10.1016/0020-1383(91)90063-K CR - Leung, F., & Chow, S. P. (2003). A prospective, randomized trial comparing the limited contact dynamic compression plate with the point contact fixator for forearm fractures. The Journal of Bone and Joint Surgery. American Volume, 85(12), 2343–2348. https://doi.org/10.2106/00004623-200312000-00011 CR - Leung, F., & Chow, S. P. (2006). Locking compression plate in the treatment of forearm fractures: A prospective study. Journal of Orthopaedic Surgery (Hong Kong), 14(3), 291–294. CR - Lucas, J. F., Lee, M. A., & Eastman, J. G. (2016). Optimizing compression: Comparing eccentric plate holes and external tensioning devices. Injury, 47(7), 1461–1465. https://doi.org/10.1016/j.injury.2016.04.020 Marcheix, P. S., Delclaux, S., Ehlinger, M., Scheibling, B., Dalmay, F., Hardy, J., … & Mansat, P. (2016). Pre- and postoperative complications of adult forearm fractures treated with plate fixation. Orthopaedics & Traumatology: Surgery & Research, 102(6), 781–784. https://doi.org/10.1016/j.otsr.2016.04.014 CR - Matres-Lorenzo, L., Diop, A., Maurel, N., Boucton, M. C., Bernard, F., & Bernardé, A. (2016). Biomechanical comparison of locking compression plate and limited contact dynamic compression plate combined with an intramedullary rod in a canine femoral fracture-gap model. Veterinary Surgery, 45(3), 319–326. https://doi.org/10.1111/vsu.12451 CR - Matsuura, Y., Rokkaku, T., Suzuki, T., Thoreson, A. R., An, K. N., & Kuniyoshi, K. (2017). Evaluation of bone atrophy after treatment of forearm fracture using nonlinear finite element analysis: A comparative study of locking plates and conventional plates. Journal of Hand Surgery - American Volume, 42(8), 659.e1–659.e9. https://doi.org/10.1016/j.jhsa.2017.03.041 CR - Perren, S. M., Allgöwer, M., Brunner, H., Burch, H. B., Cordey, J., Ganz, R., et al. (1991). The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP): Scientific background, design and application. Injury, 22(Suppl. 1), 1–41. https://doi.org/10.1016/0020-1383(91)90123-V CR - Plecko, M., Lagerpusch, N., Andermatt, D., Frigg, R., Koch, R., Sidler, M., … & Simon, U. (2013). The dynamisation of locking plate osteosynthesis by means of dynamic locking screws (DLS)—An experimental study in sheep. Injury, 44(10), 1346–1357. https://doi.org/10.1016/j.injury.2012.10.022 CR - Ravi, K. B., Mathew, T. A., & H. M. (2017). A randomized controlled study of dynamic compression plate (DCP) versus limited contact dynamic compression plate (LC-DCP) in treatment of forearm bone fractures in adults (age 18-60 years). International Journal of Orthopaedic Sciences, 3(2k), 765–773. https://doi.org/10.22271/ortho.2017.v3.i3k.115 CR - Richter, H., Plecko, M., Andermatt, D., Frigg, R., Kronen, P. W., Klein, K., … & Wymann, W. (2015). Dynamization at the near cortex in locking plate osteosynthesis by means of dynamic locking screws: An experimental study of transverse tibial osteotomies in sheep. The Journal of Bone and Joint Surgery - American Volume, 97(3), 208–215. https://doi.org/10.2106/JBJS.M.00529 CR - Saikia, K. C., Bhuyan, S. K., Bhattacharya, T. D., Borgohain, M., Jitesh, P., & Ahmed, F. (2011). Internal fixation of fractures of both bones forearm: Comparison of locked compression and limited contact dynamic compression plate. Indian Journal of Orthopaedics, 45(5), 417–421. https://doi.org/10.4103/0019-5413.83762 Schulte, L. M., Meals, C. G., & Neviaser, R. J. (2014). Management of adult diaphyseal both-bone forearm fractures. Journal of the American Academy of Orthopaedic Surgeons, 22(7), 437–446. https://doi.org/10.5435/JAAOS-22-07-437 CR - Shevate, I., Patil, G. L., Salunkhe, R., Deshmukh, A. V., Khandge, A., Yadav, S., & Sukrethan, S. V. (2022). Dynamic compression plate versus locking compression plate fixation in adult forearm fractures: A prospective interventional study. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2022/56969.16788 CR - Uhl, J. M., Seguin, B., Kapatkin, A. S., Schulz, K. S., Garcia, T. C., & Stover, S. M. (2008). Mechanical comparison of 3.5 mm broad dynamic compression plate, broad limited-contact dynamic compression plate, and narrow locking compression plate systems using interfragmentary gap models. Veterinary Surgery, 37(7), 663–673. https://doi.org/10.1111/j.1532-950X.2008.00433.x CR - Xiong, Y., Zhao, Y. F., Xing, S. X., Du, Q. Y., Sun, H. Z., & Wang, Z. M. (2010). Comparison of interface contact profiles of a new minimum contact locking compression plate and the limited contact dynamic compression plate. International Orthopaedics, 34(5), 715–718. https://doi.org/10.1007/s00264-009-0836-8 CR - Xue, Z., Xu, H., Ding, H., Qin, H., & An, Z. (2016). Comparison of the effect on bone healing process of different implants used in minimally invasive plate osteosynthesis: Limited contact dynamic compression plate versus locking compression plate. Scientific Reports, 6(1):1–9. https://doi.org/10.1038/srep3790 UR - https://doi.org/10.59244/ktokusbd.1681630 L1 - https://dergipark.org.tr/tr/download/article-file/4797006 ER -