TY - JOUR T1 - Bacillus cereus Strain BBS7 Kök Bakterisi İzolatının Kuraklık Stresi Altında Domateste Isı Şok Genlerinin İfadesi Üzerine Etkileri TT - Effects of Bacillus cereus strain BBS7 Rhizobacterium Isolate on the Expression of Heat Shock Genes in Tomato Under Drought Stress AU - Çakır Aydemir, Birsen AU - Güçlüer, Macide Elif PY - 2025 DA - June Y2 - 2025 DO - 10.18615/anadolu.1683423 JF - ANADOLU Journal of Aegean Agricultural Research Institute JO - ANADOLU PB - Ege Tarımsal Araştırma Enstitüsü Müdürlüğü WT - DergiPark SN - 1300-0225 SP - 85 EP - 93 VL - 35 IS - 1 LA - tr AB - Kuraklık stresi, bitkilerin fizyolojik işlevlerinde meydana gelen değişimler nedeniyle tarımsal üretimde önemli ekonomik kayıplara neden olmaktadır. Tarım sektöründe stratejik bir öneme sahip olan domates bitkisi de bu stres koşullarından en fazla etkilenen türler arasında yer almaktadır. Bitki gelişimini artıran kök bakterilerinin hücresel, fizyolojik ve morfolojik mekanizmaları etkileyerek bitkilerin kuraklık toleransını artırdığı belirlenmiştir. Bu çalışmada, domates tohumları Bacillus cereus strain BBS7 kök bakterisi ile sardırıldıktan sonra torf ortamına ekilmiştir. Fideler 2-3 gerçek yapraklı döneme ulaştıktan sonra su kültürüne alınmış ve 7 gün boyunca kontrol uygulamasında tutulduktan sonra PEG 6000 ile kuraklık stresine tabi tutulmuştur. Kuraklık stresinin etkisi (Ψs = -1.0 MPa) kademeli olarak artırılarak (¼, ½, ¾ ve tam doz) uygulanmış, her bir doz artışı 48 saatlik aralıklarla gerçekleştirilmiştir. Stres uygulamasının ardından 2. ve 12. saatlerde alınan bitki örneklerinde, kuraklık stresine yanıt olarak üretilen HSP21, HSP70 ve HSFA gibi ısı şok protein genlerinin ekspresyon seviyeleri qPCR yöntemiyle analiz edilmiştir. Sonuçlar, B. cereus strain BBS7 kök bakterisinin bu genlerin ekspresyon profillerini düzenleyerek domates bitkilerinde kuraklık direncini artıran etkili bir PGPR türü olduğunu göstermiştir. KW - Solanum lycopersicum KW - kuraklık stresi KW - mRNA ifadesi KW - Bacillus cereus KW - eş zamanlı PCR N2 - Drought stress causes significant economic losses in agricultural production due to disruptions in the physiological functions of plants. Tomato plants, which have strategic importance in the agricultural sector, are among the species most severely affected by these stress conditions. Research has demonstrated that root bacteria promoting plant growth enhance drought tolerance by influencing cellular, physiological, and morphological mechanisms. In this study, seeds of tomato were inoculated with Bacillus cereus strain BBS7 and planted in a peat medium. Seedlings at the 2-3 true leaf stage were transferred to a hydroponic system and maintained under control conditions for 7 days before being subjected to drought stress simulated using PEG 6000. The drought stress intensity was gradually increased (¼, ½, ¾, and full dose) every 48 hours until the target water potential (Ψs = -1.0 MPa) was achieved. Plant samples were collected at the 2nd and 12th hours after stress application, and the expression levels of heat shock protein genes (HSP21, HSP70, and HSFA), produced in response to drought stress, were analyzed via qPCR. The results indicate that B. cereus strain BBS7 acts as an effective PGPR (Plant Growth-Promoting Rhizobacterium) by regulating the expression profiles of these genes, thereby enhancing drought resistance in tomato plants. CR - Altunlu, H. 2011. Aşılamanın Domateste Kuraklık Stresi Üzerine Etkileri. Ege Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı (Basılmamış) Doktora tezi. İzmir- Türkiye. 206 s. CR - Altunlu, H., G. Aydoner Coban, A. Gul, H. Ozaktan. 2024. Effect of Rhizobacteria On Drought Stress Tolerance of Tomato Plants at Vegetative and Fruiting Growth Stages. Journal of Crop Health 76: 195–208. https://doi.org/10.1007/s 10343-023-00941-1. CR - Altunlu, H., G. Aydöner Çoban, ve A. Gül. 2022. Domates genotiplerinin kuraklık stresine tolerans açısından tohum çimlendirme ve vegetatif gelişme aşamalarında hızlı taranmasına uygun testlerin optimizasyonu. Journal of Agriculture Faculty of Ege University 59(4): 697-707. https://doi.org/10.20289/zfdergi.1117366 CR - Aranda, M.A., M. Escaler, D. Wang, A.J. Maule. 1996. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci. 93:15289–15293. CR - Baniwal, S.K., K. Bharti, K.Y. Chan et al. 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci. 29:471–487 CR - Bray, E. A. 1988. Drought- and ABA-Induced Changes in Polypeptide and mRNA Accumulation in Tomato Leaves. Plant Physiology. 88(4): 1210- 1214. doi: 10.1104/pp.88.4.1210 CR - Bukau, B., A.L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366. CR - Cho, S.M., R. Beom, K. Yong, Y. Ang, C. oung, K. Heol. 2013. Transcriptomeanalysis of induced systemic Drought Tolerance Elicited by Pseudomonaschlororaphis O6 in Arabidopsis thaliana. Plant Pathol J. 29: 209–220. CR - Dimkpa, C., T. Weinand, F. Asch. 2009. Plant-rhizobacteria interactions alleviateabiotic stress conditions. Plant Cell Environ. 32: 1682–1694. CR - Djordjevic, MA., DW. Gabriel, BG. Rolfe. 1987. Rhizobium the Refined Parasite of Legumes. Annual review of phytopathology, 25(1), 145-168. CR - Ferreira MCB, MS. Fernandes, J. Döbereiner. 1987. Role of Azospirillum Brasilense Nitrate Reductase in Nitrate Assimilation by Wheat Plants. Biology and fertility of soils 4(1): 47-53. CR - Fragkostefanakis, S., S. Roth, E. Schleiff, K.D. Scharf. 2015. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ. 38: 1881–1895. CR - Guerra, D., C. Crosatti, H.H. Khoshro, A. M. Mastrangelo, E. Mica, Mazzucotelli, E. 2015. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Front Plant Sci. 6:57. CR - Gul, A., H. Ozaktan, L. Yolageldi, H. Altunlu, G. Aydoner Coban , G. Eryigit, O. Unay. 2021. In vitro selection of rhizobacteria for increasing drought tolerance of tomato plants. 1320:429-436. https://doi.org/10.17660/ActaHortic. 2021. 1320.57. CR - Jones, H.G. 2006. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot. 58:119–130. CR - Kaldenhoff, R. and M. Fischer. 2006. Aquaporins in plants. Acta Physiol. 187:169–176. CR - Katiyar-Agarwal, S., M. Agarwal, and A. Grover. 2003. Heat-tolerant basmati rice engineered by over-expression of hsp101 . Plant Mol Biol 51:677–686. https://doi.org/10.1023/A:1022561926 676 CR - Kim, Y.C., B. Glick, Y. Bashan, C.M. Ryu. 2013. Enhancement of plant drought tolerance by microbes. In: Aroca, R. (Ed.), Plant Responses to Drought Stress.Springer Verlag, Berlin. CR - Kotak, S., J. Larkindale, U Lee, P. von Koskull-Döring, E. Vierling, K. D. Scharf. 2007. Complexity of the heat stressresponse in plants. Curr Opin Plant Biol. 10:310–316. CR - Kregel, K.C. 2002. Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 92:2177–2186. CR - Kumar, R.R., S. Goswami, S.K. Sharma, K. Singh, K. A. Gadpayle, N, Kumar, G. K. Rai, M. Singh, R. D. Rai. 2012 Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. Int J. Plant Physiol Biochem. 4:83–91. CR - Lata, C., and M. Prasad. 2011. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 62:4731–4748. CR - Latif, F., F. Ullah, S. Mehmood, A. Khattak, A. Khan, S. Khan, I. Husain. 2016. Effects of salicylic acid on growth and accumulation of phenolics in Zea mays L. under drought stress. Acta Agric Scand Sect B Soil Plant Sci. 66:325–332. CR - Leborgne-Castel, N., E.P. Jelitto-Van Dooren, A.J. Crofts, J. Denecke. 1999. Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress. Plant Cell. 11:459–470. CR - Liberek, K., A. Lewandowska, S. Ziętkiewicz. 2008. Chaperones in control of protein disaggregation. EMBO J. 27:328–335. CR - Lim, J.H., S.D. Kim. 2013. Induction of drought stress resistance by multi-functionalPGPR Bacillus licheniformis K11 in Pepper. Plant Pathol. J. 29: 201–208. CR - Mittler, R., A. Finka, P. Goloubinoff. 2012. How do plants feel the heat? Trends Biochem Sci. 37: 118–125. CR - Nouri, M.Z., S. Komatsu. 2013. Subcellular protein overexpression to develop abiotic stress tolerant plants. Front Plant Sci. 4:2. CR - Peremyslov, V.V., Y. Hagiwara, V.V. Dolja. 1999. HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci. 96:14771–14776. CR - Pérez-Clemente, R.M., V. Vives, S.I. Zandalinas et al 2013. Biotechnological approaches to study plant responses to stress. Biomed Res Int. https ://doi.org/10.1155/2013/65412 0 CR - Priya, M., O.P. Dhanker, K.H.M. Siddique, B. HanumanthaRao, R.M. Nair, S. Pandey, S. Singh, RK. Varshney, PVV. Prasad, H. Nayyar. 2019. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theor Appl Genet. 132(6):1607-1638. doi: 10.1007/s00122-019-03331-2. Epub 2019 Apr 2. PMID: 30941464. CR - Rosenzweig, C., J. Elliott, D. Deryng, A.C. Ruane, C. Müller, A. Arneth, K.J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T.A. Pugh, E. Schmid, E. Stehfest, H. Yang, J.W. Jones. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 111:3268–3273. CR - Sable, A., and S.K. Agarwal. 2018. Plant heat shock protein families: essential machinery for development and defense. Int J Biol Sci. 4:51–64. CR - Sarkar, N.K., P. Kundnani, A. Grover. 2013. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones. 18: 427–437. CR - Sarma, R. K., and R. Saikia. 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21, Plant and Soil, 377(1): 111-126. doi: 10.1007/s11104-013-1981-9. CR - Sewelam, N., Y. Oshima, N. Mitsuda, M. OHME-TAKAGI. 2014. A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant Cell Environ. 37:2024–2035. CR - Timmusk, S., A. Islam, D. Abd El, C. Lucian, T. Tanilas, A. Kannaste, L. Behers, E. Nevo, G. Seisenbaeva, E. Stenström, Ü. Niinemets . 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harshenvironments: Enhanced biomass production and reduced emissions of stressvolatiles. PLoS One 9:1–13. CR - Timmusk, S., and E. Nevo. 2011. Plant root associated biofilms. pp. 285–300. In: Maheshwari, D.K.(Ed.). Bacteria in Agrobiology. Plant Nutrient Management. 3. Springer Verlag, Berlin. CR - Timmusk, S., and E.G. Wagner. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana geneexpression: a possible connection between biotic and abiotic stress responses.Mol. Plant Microb. Interact. 12, 951. CR - Tuteja, N., and S.S. Gill. 2016. Abiotic stress response in plants. Environmental Science, Biology, Agricultural and Food Sciences, Wiley, Hoboken. https://api.semanticscholar.org/CorpusID:90643900 CR - Udvardi, M.K., K. Kakar, M. Wandrey, O. Montanari, J. Murray, A. Andriankaja, J-Y. Zhang, V. Benedito, J.M.I. Hofer, F. Chueng, D. 2007. Christopher. Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol. 144:538–549. CR - ul Haq, S., A. Khan, A. M. Khattak, W. X. Gai, H. X. Zhang, Z. H. Gong. 2019. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences. 20(21): 5321-5352. CR - Vishwakarma, K., N. Upadhyay, N. Kumar, G. Yadav, J. Singh, R.K. Mishra, V. Kumar, R. Verma, R.G. Upadhyay, M. Pandey, S. Sharma. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci. 8:161. CR - Vurukonda S. S. K. P., S. Vardharajula, M. Shrivastava, A. SkZ. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria, Microbiological Research 184: 13-24. ISSN 0944-5013, https://doi.org/10.1016/j.micres.2015.12.003. CR - Wahid, A., S. Gelani, M. Ashraf, M.R. Foolad. 2007. Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223 CR - Wang, J., N. Sun, T. Deng, L. Zhang, K. Zuo. 2014. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genom 15:961 CR - Wang, W., B. Vinocur, O. Shoseyov, A. Altman. 2004. Role of plant heatshock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244–252. CR - Yang, J., J.W. Kloepper, C.M. Ryu. 2009. Rhizosphere bacteria help plants tolerateabiotic stress. Trends Plant Sci. 14: 1–4. CR - Ye, Y., Y. Ding, Q. Jiang, F. Wang, J. Sun, C. Zhu. 2017. The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep. 36:235–242. CR - Zandalinas, S.I., R. Mittler, D. Balfagón, V. Arbona, A. Gómez-Cadenas. 2018. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 162:2–12. CR - Zhang, J., Y. Li, H-X Jia, J.B. Li, J. Huang, M.Z. Lu, J.J. Hu. 2015. The heat shock factor gene family in Salix suchowensis: a genome-wide survey and expression profiling during development and abiotic stresses. Front Plant Sci 6:74. UR - https://doi.org/10.18615/anadolu.1683423 L1 - https://dergipark.org.tr/tr/download/article-file/4804878 ER -