TY - JOUR T1 - ANALYSIS OF FOREST CONSERVATION PERFORMANCE OF MAJOR FORESTED COUNTRIES: AN APPLICATION USING TOPSIS AND WASPAS TT - BAŞLICA ORMAN VARLIĞINA SAHIP ÜLKELERIN ORMAN KORUMA PERFORMANSININ ANALIZI: TOPSIS VE WASPAS YÖNTEMLERİYLE BİR DEĞERLENDİRME AU - Altıntaş, Furkan Fahri PY - 2025 DA - October Y2 - 2025 DO - 10.32328/turkjforsci.1687349 JF - Turkish Journal of Forest Science JO - Turk J For Sci PB - Kahramanmaraş Sütçü İmam Üniversitesi WT - DergiPark SN - 2618-6616 SP - 313 EP - 338 VL - 9 IS - 2 LA - en AB - Countries hosting extensive forest areas, particularly those encompassing a significant proportion of the world’s forests, play a critical role in global biodiversity, environmental stability, and economic systems. Within this framework, the forest conservation performance of nine nations—Russia, Brazil, Canada, the USA, China, the Democratic Republic of Congo (DRC), Indonesia, India, and Peru—representing 65% of global forest cover, was evaluated using the 2024 Forest Environmental Performance Index (EPI-F) criteria through the WASPAS (Weighted Aggregated Sum Product Assessment) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) methodologies. Results indicated that rankings derived from WASPAS and TOPSIS diverged only for China and India. Furthermore, average forest conservation performance scores were computed using both approaches. According to WASPAS, India, China, and Peru exceeded the average, whereas TOPSIS identified India, China, Peru, and Indonesia as above-average performers. Consequently, a joint evaluation of both methods suggests that Russia, Brazil, Canada, the USA, the DRC, and Indonesia, whose forest conservation performances fall below the average, should reinforce their conservation policies to more effectively support global environmental integrity, biodiversity preservation, and economic sustainability. Moreover, sensitivity and comparative analyses confirmed the suitability of WASPAS and TOPSIS within the EPI-F framework for assessing these countries’ forest conservation performance. Regarding limitations, the study exclusively employed data from 2024. Future research may benefit from longitudinal analyses spanning multiple years and incorporating additional multi-criteria decision-making (MCDM) techniques to broaden the methodological comparison. KW - MCDM KW - WASPAS KW - TOPSIS KW - environmental performance index KW - forest conservation performance N2 - Dünyadaki ormanların önemli bir bölümüne ev sahipliği yapan geniş orman alanlarına sahip ülkeler, küresel biyolojik çeşitliliğin korunması, çevresel denge ve ekonomik sistemler üzerinde belirleyici bir role sahiptir. Bu bağlamda, dünya ormanlarının %65’ini barındıran dokuz ülkenin—Rusya, Brezilya, Kanada, ABD, Çin, Kongo Demokratik Cumhuriyeti (KDC), Endonezya, Hindistan ve Peru—orman koruma performansları, 2024 yılı Orman Çevresel Performans Endeksi (EPI-F) kriterleri doğrultusunda, WASPAS (Ağırlıklı Toplam Çarpım Değerlendirme Yöntemi) ve TOPSIS (İdeal Çözüme Benzerliğe Göre Tercih Sıralaması Tekniği) çok kriterli karar verme yöntemleri kullanılarak değerlendirilmiştir. Bulgular, WASPAS ve TOPSIS yöntemlerinden elde edilen sıralamaların yalnızca Çin ve Hindistan açısından farklılık gösterdiğini ortaya koymuştur. Ayrıca, her iki yöntemle ülkelerin ortalama orman koruma performans değerleri hesaplanmıştır. WASPAS yöntemine göre Hindistan, Çin ve Peru ortalamanın üzerinde performans sergilerken; TOPSIS yöntemi Hindistan, Çin, Peru ve Endonezya’yı ortalamanın üzerinde değerlendirmiştir. Dolayısıyla, her iki yöntemin ortak değerlendirilmesi sonucunda, Rusya, Brezilya, Kanada, ABD, KDC ve Endonezya gibi ülkelerin orman koruma performanslarının ortalamanın altında kaldığı ve bu ülkelerin küresel çevre sağlığı, biyolojik çeşitlilik ve ekonomik sürdürülebilirliğe daha etkin katkı sağlayabilmeleri için orman koruma politikalarını güçlendirmeleri gerektiği sonucuna ulaşılmıştır. Ayrıca yapılan duyarlılık ve karşılaştırmalı analizler, WASPAS ve TOPSIS yöntemlerinin EPI-F çerçevesinde bu ülkelerin orman performanslarının değerlendirilmesinde uygun ve geçerli araçlar olduğunu ortaya koymuştur. Çalışmanın sınırlılıkları bağlamında, yalnızca 2024 yılına ait veriler kullanılmıştır. Gelecek araştırmalarda, çok yıllı verilerin dikkate alındığı daha kapsamlı analizlerin yapılması ve ilave çok kriterli karar verme (ÇKKV) yöntemlerinin dahil edilmesi, yöntemsel karşılaştırmaların genişletilmesine olanak sağlayabilir. CR - Aguilar, F. X. (2021). Socioeconomic and ecological impacts of China's forest sector policies. Forest Policy and Economics, 127. Doi: https://doi.org/10.1016/j.forpol.2021.102454. CR - Aktaş, R., Doğanay, M. M., Gökmen, Y., Gazibey, Y., & Türen, U. (2015). Sayısal karar verme yöntemleri. İstanbul: Beta Yayıncılık. CR - Almomani, M. A., Mahafdeh, Q., & Almomani, A. (2024). Selecting the best thermal barrier coating material for hot sections in gas turbines using AHP and TOPSIS multi-criteria decision-making techniques. International Journal on Interactive Design and Manufacturing (IJIDeM), 18, 4173–4186. Doi: https://doi.org/10.1007/s12008-024-01933-9. CR - Alsanousi, A. T., Alqahtani, A. Y., Makki, A. A., & Baghdadi, M. A. (2024). A Hybrid MCDM approach using the BWM and the TOPSIS for a financial performance-based evaluation of Saudi stocks. Information, 15, 1-22. Doi: https://doi.org/10.3390/info15050258. CR - Amiri, A. A., Wahid, M. N., Al-Buraiki, A. S., & Al-Sharafi, A. (2024). A strategic multi-criteria decision-making framework for renewable energy source selection in Saudi Arabia using AHP. Renewable Energy, 236, 1-10. Doi: https://doi.org/10.1016/j.renene.2024.121523. CR - Arisantoso, Somaida, M. H., Sanwasih, M., & Shalahudin, M. I. (2023). Multi-criteria decision-making using the waspas method in webcam selection decision support systems. The IJICS (International Journal of Informatics and Computer Science), 7(1), 1−10. Doi: https://doi.org/ 10.30865/ijics.v7i1.6001. CR - Atan, M., & Altan, Ş. (2020). Örnek uygulamalarla çok kriterli karar verme yöntemleri. Ankara: Gazi Kitapevi. CR - Ayçin, E. (2019). Çok kriterli karar verme. Ankara: Nobel Yayın. CR - Babur, E., Ö. S. Uslu, M. L. Battaglia, et al. (2021). Studying soil Erosion by evaluating changes in physico-chemical properties of soils under different land-use types. Journal of the Saudi Society of Agricultural Sciences, 20 (3), 190–197. CR - Bautista, H., Moreno, M., & Argotti, E. (2024). Reforestation and its role in the sustainable development of one community of Luz de América, Ecuador, with eight subtropical plant species implemented. E3S Web of Conferences, (537), 1-9. CR - Bellamy, C., Rattey, A., Edwards, C., Kortland, K., Stringer, A., Tew, E. …Broome, A. (2024). The forest biodiversity index (FOBI): Monitoring forest biodiversity potential over space and time. Environmental Research Economy, 3, 1-25. Doi: https://doi.org/10.1088/2752-664X/ad57cf. CR - Binsaeed, R. H., Nassani, A. A., Zaman, K., Arshad, Z., Haffar, M., Lutfiansyah, D. Y., . . . Salamun, H. (2024). Assessing forest conservation strategies for biodiversity restoration and sustainable development: A comparative analysis of global ıncome groups. Problemy Ekorozwoju – Problems Of Sustainable Development, 19(1), 122-147. Doi: https://doi.org/10.35784/preko.5753. CR - Block, S., Emerson, J. W., Esty, D. C., de Sherbinin, A., & Wendling, Z. A. (2024). 2024 Environmental Performance Index. New Haven: Yale Center for Environmental Law & Policy. CR - Brodny, J., Tutak, M., & Bindzár, P. (2024). Measuring and Assessing the Level of Living Conditions and Quality of Life in Smart Sustainable Cities in Poland. Framework for Evaluation Based on MCDM Methods, 7, 1221–1260. Doi: https://doi.org/10.3390/smartcities7030052. CR - Chakraborty, S., Zavadskas, E. K., & Antucheviciene, J. (2015). Applications of waspas method as a multi-criteria tool. Economic Computation and Economic Cybernetics Studies And Research, 49(1), 5-22. CR - Dağıstanlı, H. A., & Kurtay, K. G. (2024). Facility location selection for ammunition depots based on GIS and pythagorean fuzzy WASPAS. Journal of Operational Intelligence, 2(1), 36-49. Doi: https://doi.org/10.31181/jopi2120247. CR - Dåsnes, N. (2024). Save our forest. London: Farshore. CR - Demir, G., & Arslan, R. (2022). Sensitivity analysis in multi-criteria decision-making problems. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(3), 1025-1056. CR - Demir, G., Özyalçın, A. T., & Bircan, H. (2021). Çok kriterli karar verme yöntemleri ve ÇKKV Yazılımı İle Problem Çözümü. Ankara: Nobel. CR - Demirci, A. (2020). Sağlık hizmetleri yönetiminde çok kriterli karar verme teknikleri. Ankara: Gazi Kitapevi. CR - Dimitrakopoulos, P. G., & Jones, N. (2021). Protected areas in forest conservation: Challenges and opportunities. Forests, 12(488), 1-4. Doi: https://doi.org/10.3390/f12040488 . CR - Dinçer, S. E. (2019). Çok kriterli karar alma. Ankara: Gece Akademi. CR - Dindaroglu, T., Babur, E., Battaglia, M., Seleiman, M., Uslu, O.S., & Roy, R. (2021) Impact of depression areas and land-use change in the soil organic carbon and total nitrogen contents in a semi-arid karst ecosystem. CERNE, 27, e-102980. CR - Ecer, F. (2020). Çok kriterli karar verme. Ankara: Seçkin Yayıncılık. FAO. (2024). The State of the World’s Forests 2024 – Forest-sector innovations towards a more sustainable future. Rome: FAO. CR - Francy, K. A., & Rao, C. S. (2024). Multi-response optimization of cold extrusion parameters on aa 2024 alloy using topsis. J. Inst. Eng. India Ser., 1-16. Doi: https://doi.org/10.1007/s40033-024-00700-04. CR - FSC. (2024). Forest Future. Bonn: Forest Stewardship Council. CR - Fu, Y., Sun, Y., Liu, J., Cashore, B. W., & Liang, W. (2024). Unraveling forest practice policies in China: Subnational comparisons through policy prescriptiveness framework. Forests, 15, 1-15. Doi: https://doi.org/10.3390/f15060927. CR - Ghadai, R. K., Chakraborty, S., & Kalita, K. (2024). On solving parametric optimization problem of an end milling process for machining of Al 1070 using MCDM Techniques: A comparative analysis. Advances in Materıals and Processing Technologies, 10(3), 2421-2443. Doi: https://doi.org/10.1080/2374068X.2023.2216398. CR - Granados, R. G. (2024). The effectiveness and efficiency of forest conservation policies to reduce deforestation in the Peruvian Amazon (Dissertation), Rheinischen Friedrich-Wilhelms-Universität, Bonn. CR - Handayani, N., Heriyani, N., Septian, F., & Alexander, A. D. (2023). Multi-criteria decision-making using the waspas method for online English course selection. Jurnal Teknoinfo, 17(1), 260-270. 260-270. CR - Hao, Y., Xu, Y., Zhang, J., Hu, X., Huang, J., Chang, C.-P., & Guo, Y. (2019). Relationship between forest resources and economic growth: Empirical evidence from China. Journal of Cleaner Production, 214(29), 848-859. Doi: https://doi.org/10.1016/j.jclepro.2018.12.314. CR - Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. New York: Springer-Verlag. CR - Joshi, A. K., Pant, P., Kumar, P., Giriraj, A., & Joshi, P. K. (2010). National forest policy in India: Critique of targets and implementation. Springer, 1-15. Doi: https://doi.org/ 10.1007/s11842-010-9133-z. CR - Kalicka-Mikołajczyk, A. (2019). Forest Protection in the European Union. Forest Research Papers, 80(4), pp. 253–262. Doi: https://doi.org/10.2478/frp-2019-0025. CR - Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of objective weights using a new method based on the removal effects of criteria (merec). Symmetry, 13(525), 1-21. Doi: https://doi.org/10.3390/sym13040525. CR - Khanna, L. S. (2015). Forest Protection. Kanpur: Khanna Bandhu. CR - Khichad, J. S., Vishwakarma, R. J., Gaur, A., & Sain, A. (2024). Optimization of highway performance and safety by integrated multi-criteria decision-making techniques. Int. J. Pavement Res. Technol., 1-11. Doi: https://doi.org/10.1007/s42947-024-00452-w. CR - Kissinger, G., Herold, M., & De Sy, V. (2012). Drivers of deforestation and forest degradation: A synthesis report for REDD+ policymakers. Vancouver: Lexeme Consulting. CR - Korkmaz, M., & Gürer, D. (2018). Financial performance evaluation of forest village cooperatives: A multi-criteria topsis approach. CERNE, 24(3), 280-287. Doi: https://doi.org/10.1590/01047760201824032532. CR - Kökyıldırım, A., & Antmen, Z. F. (2024). Determination of financial performance in electric power enterprises with entropy weighted waspas analysis method. Çukurova University Journal of the Faculty of Engineering, 8(49), 849-860. CR - Laktuka, K., Blumberga, D., & Rozakis, S. (2023). Assessing bioeconomy development opportunities in the Latvian policy planning framework. Sustainability, 15(1634), 1-17. Doi: https://doi.org/10.3390/su15021634. CR - Lei, Z. (2008). Reform of the forest sector in China. In: P. Durst, C. Brown, J. Broadhead, R. Suzuki, R. Leslie, & A. Inoguchi, Re-inventing Forestry Agencies (pp. 215-234). Bangkok: Food and Agriculture Organization of the United Nations. CR - Manikandan, K., & Prabhu, S. (2012). Indian Forestry: A Breakthrough Approach To Forest Service. New Delhi: Jain Bros. CR - Matos, F. A. R., Magnago, L. F. S., Aquila Chan Miranda, C., de Menezes, L. F. T., Gastauer, M., Safar, N. V. H., Schaefer, C. E. G. R., da Silva, M. P., Simonelli, M., Edwards, F. A., Martins, S. V., Meira-Neto, J. A. A., & Edwards, D. P. (2019). Secondary forest fragments offer important carbon and biodiversity co-benefits. Global Change Biology, 26(2), 509–522. Doi: https://doi.org/10.1111/gcb.14824 CR - Móstiga, M., Armenteras, D., Vayreda, J., & Retana, J. (2024). Decoding the drivers and effects of deforestation in Peru: A national and regional analysis. Environment, Development and Sustainability, 1-21. Doi: https://doi.org/10.1007/s10668-024-04638-x. CR - Naskar, S., Rahaman, A., & Biswas, B. (2024). Forest fire susceptibility mapping of West Sikkim District, India using MCDA techniques. Environment, Development and Sustainability, 1-12. Doi: https://doi.org/10.1007/s10668-024-05158-4. CR - Otay, İ., Onar, S. Ç., Öztayşi, B., & Kahraman, C. (2024). Evaluation of sustainable energy systems in smart cities using a multi expert pythagorean fuzzy BWM & TOPSIS methodology. Expert Systems with Applications, 250(15), 1-9. Doi: https://doi.org/10.1016/j.eswa.2024.123874. CR - Parthiban, K. T., Suganthy, M., & Krishna Kumar, N. (2019). Forest protection principles and applications. New Delhi: Jain Brothers. CR - Peng, X., Zhou, X., Lei, Z., Liu, J., Liu, K., Ren, F., & Chen , X. (2024). Determination of forest ecological environment assessment system based on EWM-TOPSIS: A Case study of Saihanba Mechanical Forest Farm. In: Han, D., Bashir, M.J.K. (eds), Environmental Governance, Ecological Remediation and Sustainable Development (pp. 1361–1369). Springer, Cham. CR - Ramadani, Fadillah, R., & Fitriyani, I. N. (2024). Selection of Head of Study Program using weighted aggregated sum product assessment (waspas) method. Iota, 4, 482-491. Doi: https://doi.org/10.31763/iota.v4i3.80. CR - Rao, P. (2024). Which countries have the largest forests? Retrieved 11 1, 2024, from Visual Capitalist: https://www.visualcapitalist.com/which-countries-have-the-largest-forests/ CR - Rawat, A. S. (2002). Indian Forestry: A Perspective Hardcover. New Delhi: Indus Publishing Company. CR - Salo, M., Hiedanpaaa, J., Orihuela, J. C., Pinto, C. L., & Vetter, J. L. (2023). Governmentality in evidence? Evolving rationalities of forest governance in Peru. Land Use Policy, 19, 1-9. Doi: https://doi.org/10.1016/j.landusepol.2023.106622. CR - Sarmiento, F., Larrea, C., Oeschger, A., & Jose, R. (2024). Measures to enhance forest conservation and reduce deforestation. Winnipeg: International Institute for Sustainable Development. CR - Saxena, N. C. (1999). Forest policy in India. New Delhi: World Wide Fund for Nature-India. CR - Schenck, C. A. (2023). Forest protection. Hungerford: Legare Street Press. CR - Schleicher, J., Peres, C. A., Amano, T., Llactayo6, W., & Leader-Williams, N. (2017). Conservation performance of different conservation governance regimes in the Peruvian Amazon. Scientific Reports, 7, 1-10. Doi : https://doi.org/10.1038/s41598-017-10736-w. CR - Tran, N.-T., Trinh, V.-L., & Chung, C.-K. (2024). An integrated approach of fuzzy ahp-topsis for multi-criteria decision-making in industrial robot selection. Processes, 12, 1-20. Doi: https://doi.org/10.3390/pr12081723. CR - Uludağ, A. S., & Doğan, H. (2021). Üretim yönetiminde çok kriterli karar verme. Ankara: Nobel. CR - United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. United Nations. https://sdgs.un.org/2030agenda CR - Varzaru, A., & Bocean, C. G. (2023). An empirical analysis of relationships between forest resources and economic and green performances in the European Union. Forest, 14, 1-17. Doi: https://doi.org/10.3390/f14122327. CR - Vasconcelos, A. A., Lima, M. G., Gardner, T. A., & McDermott, C. L. (2024). Prospects and challenges for policy convergence between the EU and China to address imported deforestation. Forest Policy and Economics, 162, 1-12. Doi: https://doi.org/10.1016/j.forpol.2024.103183. CR - Wang, Z., Luo, Y., Li, A., & Zhu, R. (2023). Forest carbon sequestration estimation based on Chapman-Richards and TOPSIS. In: You, P. L., Proceedings of International Conference on Image, Vision and Intelligent Systems 2022 (ICIVIS 2022)(pp. 847-857). Springer Singapore. CR - Yıldırım, M. (2021). TOPSIS yöntemi. In: B. F. Yıldırım, & E. Önder, İşletmeciler, Mühendisler ve Stratejik Problemlerin Çöüzmünde Çok Kriterli Karar Verme Yöntemleri (pp. 133-146). Bursa: Dora. CR - Zhao, J., Liu, J., & Giessen, L. (2023). How China adopted eco-friendly forest development: Lens of the dual track mechanism. Forest Policy and Economics, 149, 1-11. Doi: https://doi.org/10.1016/j.forpol.2023.102931. UR - https://doi.org/10.32328/turkjforsci.1687349 L1 - https://dergipark.org.tr/tr/download/article-file/4820717 ER -