TY - JOUR T1 - Fundamental Principles of Neutron Monitor Data Systems and Data Analysis TT - Nötron Monitör Data Sistemlerinin Temel İlkeleri ve Veri Analizi AU - Güden, Mahmut PY - 2025 DA - June Y2 - 2025 DO - 10.5281/zenodo.15739387 JF - Journal of Anatolian Physics and Astronomy JO - Journal of Anatolian Physics and Astronomy PB - Atatürk Üniversitesi WT - DergiPark SN - 2791-8718 SP - 13 EP - 23 VL - 4 IS - 1 LA - en AB - This article starts with the origin of cosmic rays, then details the production of secondary particles in the atmosphere, the operating principles of NM64-type neutron monitors, and the required environmental corrections. It introduces the Neutron Monitor Database (NMDB) network—established with European Commission FP7 support—together with its web interface, RESTful API, and Python-based analysis capabilities. The paper demonstrates how NM data can be integrated into real-time monitoring and early-warning systems for space-weather phenomena such as Forbush decreases, solar energetic particle events, and especially ground-level enhancements (GLEs). Highlighting the current absence of a neutron monitor station in Türkiye, it stresses that deploying one would fill a regional data gap, improve the spatial resolution of the global NM network, and enhance the accuracy of space-weather models. Overall, the study bridges theory and applied research, underscoring the critical role of standardized long-term NMDB data in cosmic-ray physics and radiation-safety studies. KW - Cosmic Rays KW - Neutron monitors KW - NMDB KW - Ground-Level Enhancement (GLE) KW - Forbush Decrease (FD) KW - Atmosphere N2 - Bu makale, kozmik ışınların kökeninden başlayarak atmosfer içindeki ikincil parçacık üretimi, bu parçacıkları tespit eden nötron monitörlerinin (NM64 tasarımı) çalışma prensipleri ve çevresel düzeltmeleri ayrıntılı biçimde ele alıyor. Ardından, Avrupa Komisyonu FP7 desteğiyle kurulan Neutron Monitor Database (NMDB) ağının yapısı, web ve RESTful API üzerinden veri erişimi ile Python tabanlı analiz olanakları tanıtılıyor. NM verilerinin Forbush azalmaları, Güneş kaynaklı enerjik parçacık olayları ve özellikle yer düzeyinde artışlar (GLE) gibi uzay havası fenomenlerini gerçek zamanlı izleme ve erken uyarı sistemlerine entegrasyonu gösteriliyor. Makale ayrıca Türkiye’de henüz bir nötron monitör istasyonu bulunmamasının yarattığı bölgesel veri boşluğunu vurgulayarak, ülkeye kurulacak bir istasyonun küresel NM ağının mekânsal çözünürlüğünü ve uzay havası modellerinin doğruluğunu artıracağına dikkat çekiyor. Sonuçta çalışma, teori-uygulama arasındaki boşluğu kapatarak NMDB üzerinden standartlaştırılmış uzun süreli veri kullanımının kozmik ışın fiziği ve radyasyon güvenliği araştırmalarındaki kritik rolünü ortaya koyuyor. CR - Auger, P., Ehrenfest, P., Maze, R., Daudin, J., & Fréon, R. A. (1939). Extensive Cosmic-Ray Showers. Reviews of Modern Physics, 11(3-4), 288-291. https://doi.org/10.1103/RevModPhys.11.288 CR - Bauer, G. S. (2001). Physics and technology of spallation neutron sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 463(3), 505-543. https://doi.org/10.1016/S0168-9002(01)00167-X CR - Blasi, P. (2013). The origin of galactic cosmic rays. The Astronomy and Astrophysics Review, 21(1), 70. https://doi.org/10.1007/s00159-013-0070-7 CR - Cane, H. V. (2000). Coronal Mass Ejections and Forbush Decreases. Space Science Reviews, 93(1/2), 55-77. https://doi.org/10.1023/A:1026532125747 CR - Clem, J. M., & Dorman, L. I. (2000). Neutron monitor response functions. Cosmic Rays and Earth: Proceedings of an ISSI Workshop, 21–26 March 1999, Bern, Switzerland, 335-359. CR - Dorman, L. I. (1991). Cosmic ray modulation. Nuclear Physics B - Proceedings Supplements, 22(2), 21-45. https://doi.org/10.1016/0920-5632(91)90005-Y CR - Gaisser, T. K., Engel, R., & Resconi, E. (2016). Cosmic Rays and Particle Physics (2. bs). Cambridge University Press. https://doi.org/10.1017/CBO9781139192194 CR - Hatton, C. J. (1971). The neutron monitor. Progress in elementary particle and cosmic ray physics, 1-100. CR - Heck, D., Knapp, J., Capdevielle, J. N., Schatz, G., & Thouw, T. (1998). CORSIKA: A Monte Carlo code to simulate extensive air showers. İçinde CORSIKA: a Monte Carlo code to simulate extensive air showers. CR - Kampert, K.-H., & Unger, M. (2012). Measurements of the cosmic ray composition with air shower experiments. Astroparticle Physics, 35(10), 660-678. https://doi.org/10.1016/j.astropartphys.2012.02.004 CR - Normand, E. (1996). Single-event effects in avionics. IEEE Transactions on Nuclear Science, 43(2), 461-474. https://doi.org/10.1109/23.490893 CR - Plainaki, C., Belov, A., Eroshenko, E., Mavromichalaki, H., & Yanke, V. (2007). Modeling ground level enhancements: Event of 20 January 2005. Journal of Geophysical Research: Space Physics, 112(A4), 2006JA011926. https://doi.org/10.1029/2006JA011926 CR - Potgieter, M. (2013). Solar Modulation of Cosmic Rays. Living Reviews in Solar Physics, 10. https://doi.org/10.12942/lrsp-2013-3 CR - Simpson, J. A. (1951). Neutrons Produced in the Atmosphere by the Cosmic Radiations. Physical Review, 83(6), 1175-1188. https://doi.org/10.1103/PhysRev.83.1175 CR - Gaisser, T. K., Engel, R., & Resconi, E. (2016). Cosmic Rays and Particle Physics (2. bs). Cambridge University Press. https://doi.org/10.1017/CBO9781139192194 CR - Latocha, M., Beck, P., & Rollet, S. (2009). AVIDOS--a software package for European accredited aviation dosimetry. Radiation Protection Dosimetry, 136(4), 286-290. https://doi.org/10.1093/rpd/ncp126 NMDB. (2025). NMDB. https://www.nmdb.eu/ CR - Particle Data Group, Workman, R. L., Burkert, V. D., Crede, V., Klempt, E., Thoma, U., Tiator, L., Agashe, K., Aielli, G., & Allanach, B. C. (2022). Review of particle physics. Progress of theoretical and experimental physics, 2022(8), 083C01. CR - Polatoğlu, A. (2024). Temporal Dynamics of Cosmic Rays and Sunspot Numbers: Insights from SARIMA Analysis. International Journal of Innovative Research and Reviews, 8(2), 35-41. CR - Polatoğlu, A. (2025). A thorough examination of concurrent measurements cosmic ray radiation and meteorological parameters with the support of machine learning. Radiation Measurements, 181, 107375. https://doi.org/10.1016/j.radmeas.2025.107375 CR - Polatoğlu, A., & Yeşi̇lyaprak, C. (2023). Using and Testing Camera Sensors with Different Devices at Cosmic Ray Detection. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(2), 590-597. https://doi.org/10.18185/erzifbed.1167041 CR - Schraube, H., Heinrich, W., Leuthold, G., Mares, V., & Roesler, S. (2000). Aviation route dose calculation and its numerical basis. Aviation, 4(4), 1a-45. CR - Simpson, J. A., Fonger, W., & Treiman, S. B. (1953). Cosmic Radiation Intensity-Time Variations and Their Origin. I. Neutron Intensity Variation Method and Meteorological Factors. Physical Review, 90(5), 934-950. https://doi.org/10.1103/PhysRev.90.934 CR - Thomas, D. J., & Alevra, A. V. (2002). Bonner sphere spectrometers—A critical review. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476(1-2), 12-20. https://doi.org/10.1016/S0168-9002(01)01379-1 UR - https://doi.org/10.5281/zenodo.15739387 L1 - https://dergipark.org.tr/tr/download/article-file/4834831 ER -